精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρsin2θ=2acos θ(a>0),過點P(-2,-4)的直線l: (t為參數)與曲線C相交于M,N兩點.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)若|PM|,|MN|,|PN|成等比數列,求實數a的值.

【答案】見解析

【解析】(1)把代入ρsin2θ=2acos θ,得y2=2ax(a>0),

(t為參數),消去t得x-y-2=0,

∴曲線C的直角坐標方程和直線l的普通方程分別是

y2=2ax(a>0),x-y-2=0.

(2)將 (t為參數)代入y2=2ax,

整理得t2-2 (4+a)t+8(4+a)=0.

設t1,t2是該方程的兩根,

則t1+t2=2 (4+a),t1·t2=8(4+a),

∵|MN|2=|PM|·|PN|,

∴(t1-t2)2=(t1+t2)2-4t1·t2=t1·t2,

∴8(4+a)2-4×8(4+a)=8(4+a),

∴a=1.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓C的中心在原點,其一個焦點與拋物線y2=4x的焦點相同,又橢圓C上有一點M(2,1),直線l平行于OM且與橢圓C交于A,B兩點,連接MA,MB.

(1)求橢圓C的方程;

(2)當MA,MB與x軸所構成的三角形是以x軸上所在線段為底邊的等腰三角形時,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,過點的直線與圓相交于兩點,過點且與垂直的直線與圓的另一交點為

(1)當點坐標為時,求直線的方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側的觀光道曲線段是函數時的圖象且最高點B-1,4,在y軸右側的曲線段是以CO為直徑的半圓弧

(1)試確定A,的值;

(2)現要在右側的半圓中修建一條步行道CDO單位,在點C與半圓弧上的一點D之間設計為直線段造價為2萬元/米,從D到點O之間設計為沿半圓弧的弧形造價為1萬元/米弧度試用來表示修建步行道的造價預算,并求造價預算的最大值?只考慮步行道的,不考慮步行道的寬度

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】每逢節假日,在微信好友群中發紅包逐漸成為一種時尚,還能增進彼此的感情,2016年春節期間,小魯在自己的微信好友群中,向在線的甲、乙、丙、丁四位好友隨機發放紅包,發放的規則為:每次發放一個,小魯自己不搶,每個人搶到的概率相同.

(1)若小魯隨機發放了3個紅包,求甲至少搶到一個紅包的概率;

(2)若丁因有事暫時離線一段時間,而小魯在這段時間內共發了3個紅包,其中2個紅包中各有10元,一個紅包中有5元.設這段時間內乙所得紅包的總錢數為元,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知[1,+∞).

(1)時,判斷函數單調性并證明;

(2)時,求函數的最小值;

(3)若對任意[1,+∞),>0恒成立,試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓中心在坐標原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.

(1)若=6,求k的值;

(2)求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現從某班的一次期末考試中,隨機的抽取了七位同學的數學(滿分150分)、物理(滿分110分)成績如下表所示,數學、物理成績分別用特征量表示,

特征量

1

2

3

4

5

6

7

t

101

124

119

106

122

118

115

y

74

83

87

75

85

87

83

關于t的回歸方程;

(2)利用(1)中的回歸方程,分析數學成績的變化對物理成績的影響,并估計該班某學生數學成績130分時,他的物理成績(精確到個位).

附:回歸方程 中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設P、Q為兩個非空集合,定義集合P+Q={m+n| m∈P,n∈Q},若P={0,2,5}, Q={1,2,6},則P+Q中元素的個數為

A. 9 B. 8 C. 7 D. 6

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视