精英家教網 > 高中數學 > 題目詳情
已知
i
,
j
為互相垂直的單位向量,
a
=
i
-2
j
b
=
i
j
,且
a
b
的夾角為銳角,則實數λ的取值范圍是(  )
A、(-∞,
1
2
B、(-2,
2
3
)∪(
2
3
,+∞)
C、(-∞,-2)∪(-2,
1
2
D、(
1
2
,+∞)
分析:由已知中
i
,
j
為互相垂直的單位向量,
a
=
i
-2
j
,
b
=
i
j
,我們可以計算出
a
b
,再由
a
b
的夾角為銳角,可以構造關于λ的不等式組,解不等式組即可得到答案.
解答:解:∵
i
,
j
為互相垂直的單位向量,
i
i
=1,
j
j
=1,
i
j
=0
又∵
a
=
i
-2
j
,
b
=
i
j
,
a
b
=(
i
-2
j
)•(
i
j
)+1-2λ,
a
b
的夾角為銳角,
則1-2λ>0,故λ<
1
2

但當λ=-2時,
a
=
b
=
i
-2
j
,此時
a
b
的夾角為0
故實數λ的取值范圍是(-∞,-2)∪(-2,
1
2

故選C
點評:本題考查的知識點是數量積表示兩個向量的夾角,其中根據
a
b
的夾角為銳角,數量積大于0,構造關于λ的不等式組,是解答的關鍵,但本題易忽略λ=-2時,
a
=
b
=
i
-2
j
,此時
a
b
的夾角為0,而錯選A.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知
i
j
為互相垂直的單位向量,
a
=
i
-2
j
b
=
i
j
a
b
的夾角為銳角,則實數λ的取值范圍是(  )
A、(-∞,-2)∪(-2,
1
2
)
B、(
1
2
,+∞)
C、(-2,
2
3
∪(
2
3
,+∞)
D、(-∞,
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
i
j
為互相垂直的單位向量,
a
=
i
+2
j
b
=2
i
j
,且
a
b
共線,則實數λ=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
i
j
為互相垂直的單位向量,
a
=
i
-2
j
,
b
=
i
j
,且
a
b
的夾角為銳角,則實數λ的取值范圍是(-∞,-2)∪(-2,
1
2
)
(-2,
1
2
)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
i
,
j
為互相垂直的單位向量,
a
=
i
-2
j
,
b
=-
i
j
,且
a
b
的夾角為鈍角,則實數λ的取值范圍是
(-
1
2
,2)∪(2,+∞)
(-
1
2
,2)∪(2,+∞)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视