精英家教網 > 高中數學 > 題目詳情
已知關于x的一元二次方程x2-2(a-2)x-b2+16=0,若a∈[2,6],b∈[0,4],求方程沒有實根的概率.
分析:本題是一個幾何概型,試驗的全部結果構成區域Ω={(a,b)|2≤a≤6,0≤b≤4},滿足條件的事件為:B={(a,b)|2≤a≤6,0≤b≤4,(a-2)2+b2<16},做出兩者的面積,得到概率.
解答:解:由題意知本題是一個幾何概型,
試驗的全部結果構成區域Ω={(a,b)|2≤a≤6,0≤b≤4},
其面積為S(Ω)=16
滿足條件的事件為:B={(a,b)|2≤a≤6,0≤b≤4,(a-2)2+b2<16}
其面積為S(B)=
1
4
×π×42=4π

∴所求的概率P(B)=
16
=
π
4
點評:本題考查幾何概型,幾何概型和古典概型是高中必修中學習的,高考時常以選擇和填空出現,有時文科會考這種類型的解答題目.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知關于x的一元二次函數f(x)=ax2-4bx+1.
(1)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數作為a和b,求函數y=f(x)在區間[1,+∞)上是增函數的概率;
(2)設點(a,b)是區域
x+y-8≤0
x>0
y>0
內的隨機點,求y=f(x)在區間[1,+∞)上是增函數的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)在一個紅綠燈路口,紅燈、黃燈和綠燈的時間分別為30秒、5秒和40秒.當你到達路口時,求不是紅燈的概率.
(2)已知關于x的一元二次函數f(x)=ax2-4bx+1.設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數作為a和b,求函數y=f(x)在區間[1,+∞)上是增函數的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知關于x的一元二次函數f(x)=ax2-4bx+1.
(Ⅰ)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數作為a和b,求函數y=f(x)在區間[|m+n|2上是增函數的概率;
(Ⅱ)設點(
1
2
,|m+n|min=
2
2
)是區域
x+y-8≤0
x>0
y>0
內的隨機點,求MD上是增函數的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知關于x的一元二次不等式ax2+bx+c>0的解集為(-2,3),則關于x的不等式cx+b
x
+a<0的解集為
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•藍山縣模擬)已知關于x的一元二次不等式ax2+bx+c≥0在實數集上恒成立,且a<b,則T=
a+b+cb-a
的最小值為
3
3

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视