精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的左焦點為,有一質點A處以速度v開始沿直線運動,經橢圓內壁反射無論經過幾次反射速率始終保持不變,若質點第一次回到時,它所用的最長時間是最短時間的7倍,則橢圓的離心率e  

A. B. C. D.

【答案】D

【解析】

利用橢圓的性質可得,由此即可求得橢圓的離心率.

假設長軸在x軸,短軸在y軸,以下分為三種情況:

球從沿x軸向左直線運動,碰到左頂點必然原路反彈,這時第一次回到路程是

球從沿x軸向右直線運動,碰到右頂點必然原路反彈,這時第一次回到路程是;

球從沿x軸斜向上或向下運動,碰到橢圓上的點A,

反彈后經過橢圓的另一個焦點,再彈到橢圓上一點B,

反彈后經過點,此時小球經過的路程是4a

綜上所述,從點沿直線出發,經橢圓壁反射后第一次回到點時,

小球經過的最大路程是4a,最小路程是

由題意可得,即,得

橢圓的離心率為

故選:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調區間;

)已知f(x)x=1處取得極大值.求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,點到兩點的距離之和為4,設點的軌跡為,直線交于兩點。

(Ⅰ)寫出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若函數的圖像在處的切線垂直于直線,求實數的值及直線的方程;

(2)求函數的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學用“五點法”畫函數在某一個周期內的圖象時,列表并填入了部分數據,如下表:

0

0

2

0

0

(1)請將上表數據補充完整,填寫在相應位置,并求出函數的解析式;

(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數的圖象,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點的交點為,且拋物線在點處的切線與軸交于點,拋物線在點處的切線與軸交于點,與軸交于點.

(1)若直線與拋物線交于點, ,且,求;

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓經過兩點,且圓心在直線上.

(1)求圓的方程;

(2)已知過點的直線與圓相交截得的弦長為,求直線的方程;

(3)已知點,在平面內是否存在異于點的定點,對于圓上的任意動點,都有為定值?若存在求出定點的坐標,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2x的焦點為F,平行于x軸的兩條直線l1,l2分別交C于A,B兩點,交C的準線于P,Q兩點.

(1)若F在線段AB上,R是PQ的中點,證明:AR∥FQ;

(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點的軌跡方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视