精英家教網 > 高中數學 > 題目詳情
已知fx)在x=x0處可導,則等于

A. f'x0)                                               B.fx0

C.fx0f'x0)                                     D.2fx0f'x0

解析:

=fx)+fx0)].

fx)在x=x0處可導,故fx)在x0處連續,從而=f'x0),且fx)=fx0).

答案:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)當a=1時,求f(x)的解析式;
(2)在(1)的條件下,若方程f(x)-m=0有4個不等的實根,求實數m的范圍;
(3)當2≤a<9時,設f(x)=f2(x)所對應的自變量取值區間的長度為l(閉區間[m,n]的長度定義為n-m),試求l的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)的定義域為{x∈R|x≠0},且f(x)是奇函數,當x>0時f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;
(2)求f(x)在x<0時的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)的定義域為{x∈R|x≠0},且f(x)是奇函數,當x>0時,f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2
(1)求b,c的值;
(2)求f(x)在x<0時的表達式;
(3)若關于x的方程f(x)=ax,(a∈R)有解,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區間(-∞,0)上的單調性;
(Ⅲ)若數學公式,設g(x)是函數f(x)在區間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區間數學公式上的值域為數學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區間(-∞,0)上的單調性;
(Ⅲ)若,設g(x)是函數f(x)在區間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视