精英家教網 > 高中數學 > 題目詳情

如圖,在四棱錐O-ABCD中,底面ABCD是邊長為1的菱形,∠ABC=45°,OA⊥底面ABCD,OA=2,M為OA的中點.

(1)求異面直線AB與MD所成角的大。

(2)求平面OAB與平面OCD所成二面角的余弦值.

 

【答案】

【解析】解:作AP⊥CD于點P,分別以AB、AP、AO所在直線為x、y、z軸建立坐標系,則A(0,0,0),B(1,0,0),P(0,,0),D(-,,0),O(0,0,2),M(0,0,1).

z

 

O

 
(1)=(1,0,0),=(-,,-1),則cos<,>=-,

故AB與MD所成角為.             …………………4分

(2)=(0,,-2),=(-,,-2),

設平面OCD法向量n=(x,y,z),則n·=0,n·=0,

即,取z=,則n=(0,4,). ……………………6分

易得平面OAB的一個法向量為m=(0,1,0),

cos<n,m>=,                                ……………………9分

故平面OAB與平面OCD所成二面角的平面角余弦值為.………………10分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD是邊長為1的正方形,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC中點,以A為原點,建立適當的空間直角坐標系,利用空間向量解答以下問題
(1)證明:直線BD⊥OC
(2)證明:直線MN∥平面OCD
(3)求異面直線AB與OC所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD四邊長為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC的中點.
(Ⅰ)證明:直線MN∥平面OCD;
(Ⅱ)求異面直線AB與MD所成角的大小;
(Ⅲ)求二面角A-OD-C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD四邊長為1的菱形,∠ABC=
π3
,OA⊥底面ABCD,OA=2,M為OA的中點.
(1)求三棱錐B-OCD的體積;
(2)求異面直線AB與MD所成角的余弦值;
注:若直線a⊥平面α,則直線a與平面α內的所有直線都垂直.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在四棱錐O-ABCD中,底面ABCD四邊長為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC的中點
(1)求三棱錐B-OCD的體積;
(2)求異面直線AB與MD所成角的大小;
注:若直線a⊥平面α,則直線a與平面α內的所有直線都垂直.

查看答案和解析>>

科目:高中數學 來源:江蘇同步題 題型:解答題

如圖,在四棱錐O﹣ABCD中,底面ABCD四邊長為1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC的中點.
(Ⅰ)證明:直線MN∥平面OCD;
(Ⅱ)求異面直線AB與MD所成角的大小;
(Ⅲ)求二面角A﹣OD﹣C的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视