【題目】已知橢圓C: =1(a>b>0)的短軸長為2,離心率e=
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓交于不同的兩點A,B,與圓x2+y2= 相切于點M.
(i)證明:OA⊥OB(O為坐標原點);
(ii)設λ= ,求實數λ的取值范圍.
【答案】解:(Ⅰ)∵2b=2,∴b=1.
又e= =
,a2=b2+c2 ,
∴a2=2.
∴橢圓C的方程為 ;
(Ⅱ)(i)∵直線l:y=kx+m與圓x2+y2= 相切,
∴ ,即
.
由 ,消去y并整理得,(1+2k2)x2+4kmx+2m2﹣2=0.
設A(x1 , y1),B(x2 , y2),
則 .
∵ .
=
=
= ,
∴OA⊥OB.
(ii)∵直線l:y=kx+m與橢圓交于不同的兩點A,B,
∴ ,
.
∴ =
=
.
由(Ⅱ)(i)知x1x2+y1y2=0,
∴x1x2=﹣y1y2 , ,即
.
∴ .
∵ ,
∴λ的取值范圍是
【解析】(Ⅰ)由已知得到b=1,結合e= ,即a2=b2+c2求得a2=2,則橢圓方程可求;(Ⅱ)(i)由直線l:y=kx+m與圓x2+y2=
相切,可得
,即
.聯立直線方程好橢圓方程,得到A,B橫坐標的和與積,代入可得
,得到OA⊥OB;(ii)直線l:y=kx+m與橢圓交于不同的兩點A,B,把A,B的坐標代入橢圓方程,可得
,
.在圓中由垂徑定理可得
=
=
.結合x1x2+y1y2=0,得到
.由x1 的范圍求得λ的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知橢圓 =1(a>b>0)經過點P(﹣2,0)與點(1,1).
(1)求橢圓的方程;
(2)過P點作兩條互相垂直的直線PA,PB,交橢圓于A,B.
①證明直線AB經過定點;
②求△ABP面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年8月31日下午,關于修改個人所得稅法的決定經十三屆全國人大常委會第五次會議表決通過。2018年10月1日起施行最新起征點和稅率。個稅起征點提高至每月5000元.設個人月應納稅所得額為元,個人月工資收入為
元,三險金(養老保險、失業保險、醫療保險、住房公積金)及其它各類免稅額總計為
元,則
.設月應納稅額為
,個稅的計算方式一般是分級計算求總和 (如圖表所示,共分7級).比如:小陳的應納稅所得額為
元,月應交納稅額為
元.
稅級 | 月應納稅所得額 | 稅率 |
1 |
| 3% |
2 |
| 10% |
3 |
| 20% |
4 |
| 25% |
5 |
| 30% |
6 |
| 35% |
7 |
| 45% |
(1)小王的應納稅所得額元,求
;
(2)小張的應納稅所得額元,若
元,求
;
(3)當時,寫出
的解析式(請寫成分段函數的形式).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一點.
(Ⅰ)若BM=2MP,求證:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,若二面角B﹣AC﹣M的余弦值為 ,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,若關于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8個不同的實數根,則b+c的取值范圍為( )
A.(﹣∞,3)
B.(0,3]
C.[0,3]
D.(0,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=﹣an﹣( )n﹣1+2(n∈N*),數列{bn}滿足bn=2nan .
(Ⅰ)求證數列{bn}是等差數列,并求數列{an}的通項公式;
(Ⅱ)設cn=log2 ,數列{
}的前n項和為Tn , 求滿足Tn
(n∈N*)的n的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com