精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=aln(2x+1)+bx+1.
(1)若函數yf(x)在x=1處取得極值,且曲線yf(x)在點(0,f(0))處的切線與直線2xy-3=0平行,求a的值;
(2)若b,試討論函數yf(x)的單調性.
(1)(2)當a≥0時,函數f(x)在區間為增函數;當a<0時,函數f(x)在區間為增函數;在區間為減函數.
(1)函數f(x)的定義域為,f′(x)=b,
由題意可得解得所以.
(2)若b,則f(x)=aln(2x+1)+x+1,
所以f′(x)=,
1° 令f′(x)=>0,由函數定義域可知,4x+2>0,所以2x+4a+1>0,
①當a≥0時,xf′(x)>0,函數f(x)單調遞增;
②當a<0時,xf′(x)>0,函數f(x)單調遞增.
2° 令f′(x)=<0,即2x+4a+1<0,
①當a≥0時,不等式f′(x)<0無解;
②當a<0時,x,f′(x)<0,函數f′(x)單調遞減.
綜上,當a≥0時,函數f(x)在區間為增函數;當a<0時,函數f(x)在區間為增函數;在區間為減函數
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數,圖象與軸異于原點的交點M處的切線為,軸的交點N處的切線為, 并且平行.
(1)求的值;
(2)已知實數t∈R,求的取值范圍及函數的最小值;
(3)令,給定,對于兩個大于1的正數,存在實數滿足:,,并且使得不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設函數f(x)=,g(x)=,對任意x1,x2∈(0,+∞),不等式恒成立,則正數k的取值范圍是      .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數f(x)=ln x的圖像與函數g(x)=x2-4x+4的圖像的交點個數為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a1+2a2+3a3+4a4+5a5=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數f(x)=-xln x+ax在(0,e)上是增函數,函數g(x)=|ex-a|+,當x∈[0,ln 3]時,函數g(x)的最大值M與最小值m的差為,則a=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數f(x)=mx2+ln x-2x在定義域內是增函數,則實數m的取值范圍是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的單調減區間為___________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的導數
A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视