【題目】如圖,墻上有一壁畫,最高點離地面4米,最低點
離地面2米,觀察者從距離墻
米,離地面高
米的
處觀賞該壁畫,設觀賞視角
(1)若問:觀察者離墻多遠時,視角
最大?
(2)若當
變化時,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】橢圓Γ: =1(a>b>0)的左右焦點分別為F1 , F2 , 焦距為2c,若直線y=
與橢圓Γ的一個交點M滿足∠MF1F2=2∠MF2F1 , 則該橢圓的離心率等于 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實數a的值;
(2)若A∪B=A,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某聯歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,中獎可以獲得2分;方案乙的中獎率為
,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結束后憑分數兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數學期望較大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以
軸為始邊做兩個銳角
,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為
(1)求的值; (2)求
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax﹣(1+a2)x2 , 其中a>0,區間I={x|f(x)>0}
(1)求I的長度(注:區間(a,β)的長度定義為β﹣α);
(2)給定常數k∈(0,1),當1﹣k≤a≤1+k時,求I長度的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com