精英家教網 > 高中數學 > 題目詳情

【題目】在正四棱錐中,已知異面直線所成的角為,給出下面三個命題:

:若,則此四棱錐的側面積為

:若分別為的中點,則平面;

:若都在球的表面上,則球的表面積是四邊形面積的倍.

在下列命題中,為真命題的是( )

A. B. C. D.

【答案】A

【解析】因為異面直線所成的角為,AD平行于BC故角PBC=,正四棱錐 中,PB=PC,故三角形PBC是等邊三角形;當AB=2,此四棱錐的側面積為,故是假命題;

BC的中點G 分別為的中點故得,故平面EFG//平面PAB,從而得到EF//平面PAB,故是真命題;

AB=a, ACBD的交點為O,則PO垂直于地面ABCD,PA=a,AO,PO

O為球心,球的半徑為,表面積為 ,又正方形的面積為,為真。

為真; 均為假。

故答案為A。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2sin(ωx+φ)(ω>0,﹣ )的圖象如圖所示,直線x= ,x= 是其兩條對稱軸.
(1)求函數f(x)的解析式及單調區間;
(2)若f(α)= ,且 ,求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】西部大部分地區的電力緊缺,電力公司為鼓勵市民節約用電,采取按月用電量分段收費辦法,若某戶居民每月應交電費y(元)與用電量x(度)的函數圖象是一條折線(如圖所示),根據圖象解下列問題:
(1)分別寫出當0≤x≤100和x≥100時,y與x的函數關系式;
(2)利用函數關系式,說明電力公司采取的收費標準;
(3)若該用戶某月用電62度,則應繳費多少元?若該用戶某月繳費105元時,則該用戶該月用了多少度電?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓M:: + =1(a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B.經過點F的直線l與橢圓M交于C,D兩點.
(1)求橢圓方程;
(2)當直線l的傾斜角為45°時,求線段CD的長;
(3)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 =(cosα,sinα), =(cosβ,sinβ),其中0<α<β<π.
(1)求證: 互相垂直;
(2)若k ﹣k 的長度相等,求β﹣α的值(k為非零的常數).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用五點法作函數y=2sin(2x+ )的簡圖;并求函數的單調減區間以及函數取得最大值時x的取值?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在銳角中,角, , 所對的邊分別為 , ,已知.

(1)證明: .

(2)若的面積, 為線段的中點, ,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某居民區隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,計算得 =80, =20, i=184, =720.
(1)求家庭的月儲蓄對月收入的回歸方程;
(2)判斷月收入與月儲蓄之間是正相關還是負相關;
(3)若該居民區某家庭月收入為7千元,預測該家庭的月儲蓄.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一條光線從點(﹣2,﹣3)射出,經y軸反射后與圓(x+3)2+(y﹣2)2=1相切,求入射光線所在直線方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视