【題目】已知橢圓 的左、右焦點分別為F1 , F2 , 離心率為
,短軸上的兩個頂點為A,B(A在B的上方),且四邊形AF1BF2的面積為8.
(1)求橢圓C的方程;
(2)設動直線y=kx+4與橢圓C交于不同的兩點M,N,直線y=1與直線BM交于點G,求證:A,G,N三點共線.
【答案】
(1)解:∵橢圓C的離心率 ,∴b=c,因此四邊形AF1BF2是正方形.
∴a2=8,b=c=2.
∴橢圓C的方程為
(2)解:證明:將已知直線代入橢圓方程化簡得:(2k2+1)x2+16kx+24=0,
△=32(2k2﹣3)>0,解得:k .
由韋達定理得: ①,xMxN=
,②
設M(xM,kxM+4),N(xN,kxN+4),G(xG,1),
MB方程為:y= ,則G(
,1),
∴ ,
,
欲證A,G,N三點共線,只需證 ,
共線,
即 (kxN+2)=﹣xN成立,化簡得:(3k+k)xMxn=﹣6(xM+xN)
將①②代入易知等式成立,則A,G,N三點共線得證
【解析】(1)橢圓C的離心率 ,可得b=c,四邊形AF1BF2是正方形,即a2=8,b=c=2.(2)將已知直線代入橢圓方程化簡得:(2k2+1)x2+16kx+24=0
設M(xM,kxM+4),N(xN,kxN+4),G(xG,1),
MB方程為:y= ,則G(
,1),
欲證A,G,N三點共線,只需證 ,
,共線,即只需(3k+k)xMxn=﹣6(xM+xN)即可.
科目:高中數學 來源: 題型:
【題目】(2015·湖南)如下圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐F-AEC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形中,
,
,
,
,
、
分別在
、
上,
,現將四邊形
沿
折起,使平面
平面
.
()若
,是否存在折疊后的線段
上存在一點
,且
,使得
平面
?若存在,求出
的值;若不存在,說明理由.
()求三棱錐
的體積的最大值,并求此時點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“活水圍網”養魚技術具有養殖密度高、經濟效益好的特點.研究表明:“活水圍網”養魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養殖密度
(單位:尾/立方米)的函數.當
不超過4(尾/立方米)時,
的值為
(千克/年);當
時,
是
的一次函數;當
達到
(尾/立方米)時,因缺氧等原因,
的值為
(千克/年).
(1)當時,求函數
的表達式;
(2)當養殖密度為多大時,魚的年生長量(單位:千克/立方米)
可以達到最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列判斷正確的是 (把正確的序號都填上).
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函數,則實數b=2;
②若函數在區間
上遞增,在區間
上也遞增,則函數
必在
上遞增;
③f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數f(x)的最大值為1;
④已知f(x)是定義在R上的不恒為零的函數,且對任意的x、y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數.Ks
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】醫學上所說的“三高”通常是指血脂增高、血壓增高、血糖增高等疾。疄榱私狻叭摺奔膊∈欠衽c性別有關,醫院隨機對入院的60人進行了問卷調查,得到了如下的列聯表:
(1)請將列聯表補充完整;
患三高疾病 | 不患三高疾病 | 合計 | |
男 | 6 | 30 | |
女 | |||
合計 | 36 |
(2)能否在犯錯誤的概率不超過0.005的前提下認為患“三高”疾病與性別有關? 下列的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com