精英家教網 > 高中數學 > 題目詳情

設函數.

(Ⅰ)求函數的單調區間;

(Ⅱ)當時,是否存在整數,使不等式恒成立?若存在,求整數的值;若不存在,請說明理由.

(Ⅲ)關于的方程上恰有兩個相異實根,求實數的取值范圍.

 

【答案】

(Ⅰ)由得函數的定義域為

.

;由

∴函數的遞增區間是;遞減區間是.

(Ⅱ)由(1)知,上遞減,在上遞增.

 ∴ 

又∵,,且,

時,.          

∵不等式恒成立, ∴

是整數,∴.             

∴存在整數,使不等式恒成立.

(Ⅲ)由,

,則

;由。 

上單調遞減,在上單調遞增.     

∵方程上恰有兩個相異的實根,

∴函數上各有一個零點,           

∴實數的取值范圍是

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)的單調遞增區間;
(2)如果函f(x)在定義域內既有極大值又有極小值,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數列{bn}是數列{an}的“自反函數列”
(1)設函數f(x)=
px+1
x+1
,若由函數f(x)確定的數列{an}的自反數列為{bn},求an;
(2)已知正整數列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=
-1
anSn2
,Dn是數列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2時,函h(x)=f(x)-g(x),在其定義域是增函數,求b的取值范圍;
(2)在(1)的結論下,設函數φ(x)=e2x+bex,x∈[0,ln2],求函數φ(x)的最小值;
(3)當a=-2,b=4時,求證2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中數學 來源: 題型:

設x1,x2(x1≠x2)是函數f(x)=ax3+bx2-a2x(a>0)的兩個極值點.
(1)若x1=-1,x2=2,求函f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年四川省宜賓市南溪一中高三(上)第一次月考數學試卷(理科)(解析版) 題型:解答題

已知函f(x)=ln x,g(x)=ax2+bx(a≠0).
(1)若a=-2時,函h(x)=f(x)-g(x),在其定義域是增函數,求b的取值范圍;
(2)在(1)的結論下,設函數φ(x)=e2x+bex,x∈[0,ln2],求函數φ(x)的最小值;
(3)當a=-2,b=4時,求證2x-f(x)≥g(x)-3.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视