精英家教網 > 高中數學 > 題目詳情

【題目】設f(n)=(1+ n﹣n,其中n為正整數.
(1)求f(1),f(2),f(3)的值;
(2)猜想滿足不等式f(n)<0的正整數n的范圍,并用數學歸納法證明你的猜想.

【答案】
(1)解:∵f(n)=(1+ n﹣n,

∴f(1)=1,f(2)= ﹣2= ,f(3)= ﹣3= ﹣3=﹣


(2)解:猜想:n≥3,f(n)=(1+ n﹣n<0,

證明:①當n=3時,f(3)=﹣ <0成立,

②假設當n=k(n≥3,n∈N+)時猜想正確,即f(k)= ﹣k<0,

<k,

則當n=k+1時,

由于f(k+1)= = (1+ )< (1+

<k(1+ )=k+ <k+1,

<k+1,即f(k+1)= ﹣(k+1)<0成立,

由①②可知,對n≥3,f(n)=(n)=(1+ n﹣n<0成立


【解析】(1)由f(n)=(1+ n﹣n,可求得f(1),f(2),f(3)的值;(2)猜想:n≥3,f(n)=(1+ n﹣n<0,再利用數學歸納法證明即可:①當n=3時,f(3)=﹣ <0成立;②假設當n=k(n≥3,n∈N+)時猜想正確,即 ﹣k<0,去證明當n=k+1(n≥3,n∈N+)時,f(k+1)= ﹣(k+1)<0也成立即可.
【考點精析】解答此題的關鍵在于理解數列的通項公式的相關知識,掌握如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式,以及對數學歸納法的定義的理解,了解數學歸納法是證明關于正整數n的命題的一種方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知四棱錐,其中的中點.

(1)求證:;

(2)求證:面;

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= 是定義在R上的奇函數,且f(1)=2.
(1)求實數a,b并寫出函數f(x)的解析式;
(2)判斷函數f(x)在(﹣1,1)上的單調性并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的上下兩個焦點分別為 ,過點軸垂直的直線交橢圓兩點, 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于 兩個不同的點,若存在實數,使得,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是奇函數.

(1)求實數的值;

(2)用定義證明函數上的單調性;

(3)若對任意的,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的最小正周期為.

(1)的單調遞增區間;

(2)中,角的對邊分別是滿足,求函數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)與函數y=ex的圖象關于直線y=x對稱,函數y=g(x)的圖象與y=f(x)的圖象關于x軸對稱,若g(a)=1,則實數a的值為( )
A.﹣e
B.
C.
D.e

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,P,Q分別為AB,DA上動點,且△APQ的周長為2,設 AP=x,AQ=y.

(1)求x,y之間的函數關系式y=f(x);
(2)判斷∠PCQ的大小是否為定值?并說明理由;
(3)設△PCQ的面積分別為S,求S的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有甲、乙兩種商品,經銷這兩種商品所能獲得的利潤分別是p萬元和q萬元.它們與投入資金x萬元的關系是:p= x,q= .今有3萬元資金投入經營這兩種商品,為獲得最大利潤,對這兩種商品的資金分別投入多少時,能獲取最大利潤?最大利潤為多少?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视