精英家教網 > 高中數學 > 題目詳情

【題目】某研究小組在電腦上進行人工降雨模擬試驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數據統計如表

方式

實施地點

大雨

中雨

小雨

模擬實驗總次數

A

4次

6次

2次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據人工降雨模擬試驗的統計數據
(I)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態,乙地必須是大雨才達到理想狀態,丙地只能是小雨或中雨即達到理想狀態,記“甲、乙、丙三地中達到理想狀態的個數”為隨機變量ξ,求隨機變量ξ的分布列和數學期望Eξ.

【答案】解:(Ⅰ)由人工降雨模擬試驗的統計數據,用A,B,C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨, 得到大雨、中雨、小雨的概率如下表:

方式

實施地點

大雨

中雨

小雨

A

P(A1)=

P(A2)=

P(A3)=

B

P(B1)=

P(B2)=

P(B3)=

C

P(C1)=

P(C2)=

P(C3)=

記“甲、乙、丙三地都恰為中雨”為事件E,
則P(E)=P(A2)P(B2)P(C2)= =
(Ⅱ)設甲、乙、丙三地達到理想狀態的概率分別為p1 , p2 , p3 ,
,p2=p(B1)= ,p3=P(C2)+P(C3)= ,
ξ的可能取值為0,1,2,3,
P(ξ=0)=(1﹣p1)(1﹣p2)(1﹣p3)= = ,
P(ξ=1)=p1(1﹣p2)(1﹣p3)+(1﹣p1)p2(1﹣p3)+(1﹣p1)(1﹣p2)p3
= + + = ,
P(ξ=2)=p1p2(1﹣p3)+(1﹣p1)p2p3+p1(1﹣p2)p3
= + = ,
P(ξ=3)=p1p2p3= = ,
∴隨機變量ξ的分布列為:

ξ

0

1

2

3

P

Eξ= =
【解析】(Ⅰ)由人工降雨模擬試驗的統計數據,用A,B,C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,求出大雨、中雨、小雨的概率分布表,由此利用相互獨立事件概率計算公式能求出甲、乙、丙三地都恰為中雨的概率.(Ⅱ)設甲、乙、丙三地達到理想狀態的概率分別為p1 , p2 , p3 , 則 ,p2=p(B1)= ,p3=P(C2)+P(C3)= ,ξ的可能取值為0,1,2,3,分別求出相應的概率,由此能求出隨機變量ξ的分布列和數學期望.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓 (a>b>0)短軸的端點P(0,b)、Q(0,﹣b),長軸的一個端點為M,AB為經過橢圓中心且不在坐標軸上的一條弦,若PA、PB的斜率之積等于﹣ ,則P到直線QM的距離為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設不等式|x+1|+|x﹣1|≤2的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若x∈M,|y|≤ ,|z|≤ ,求證:|x+2y﹣3z|≤

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在△ABC中,已知點D,E分別在邊AB,BC上,且AB=3AD,BC=2BE.
(Ⅰ)用向量 , 表示
(Ⅱ)設AB=6,AC=4,A=60°,求線段DE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元263年左右,我國數學家劉徽發現,當圓內接多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,由此創立了割圓術,利用割圓術劉徽得到了圓周率精確到小數點后面兩位的近似值3,14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為( ) 參考數據: ,sin15°≈0.2588,sin7.5°≈0.1305.

A.12
B.24
C.48
D.96

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題為真命題的是(
A.若 x>y>0,則 ln x+ln y>0
B.“φ= ”是“函數 y=sin(2x+φ) 為偶函數”的充要條件
C.?x0∈(﹣∞,0),使 3x0<4x0成立
D.已知兩個平面α,β,若兩條異面直線m,n滿足m?α,n?β且 m∥β,n∥α,則α∥β

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=x ln x﹣ax2+(2a﹣1)x,a∈R.
(Ⅰ)令g(x)=f′(x ),求 g(x)的單調區間;
(Ⅱ)當a≤0時,直線 y=t(﹣1<t<0)與f(x)的圖象有兩個交點A(x1 , t),B(x2 , t),且x1<x2 , 求證:x1+x2>2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=4cosxsin(x+ )+m(m∈R),當x∈[0, ]時,f(x)的最小值為﹣1.
(Ⅰ)求m的值;
(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延長AB至D,使BC=BD,且AD=5,求△ACD的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解答題。
(1)已知橢圓C: =1(a>b>0)的離心率為 ,以原點為圓心,橢圓的短半軸長為半徑的圓與直線 x﹣ y+12=0相切.求橢圓C的方程;
(2)已知⊙A1:(x+2)2+y2=12和點A2(2,0),求過點A2且與⊙A1相切的動圓圓心P的軌跡方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视