【題目】某研究小組在電腦上進行人工降雨模擬試驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數據統計如表
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗總次數 |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據人工降雨模擬試驗的統計數據
(I)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態,乙地必須是大雨才達到理想狀態,丙地只能是小雨或中雨即達到理想狀態,記“甲、乙、丙三地中達到理想狀態的個數”為隨機變量ξ,求隨機變量ξ的分布列和數學期望Eξ.
【答案】解:(Ⅰ)由人工降雨模擬試驗的統計數據,用A,B,C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨, 得到大雨、中雨、小雨的概率如下表:
方式 | 實施地點 | 大雨 | 中雨 | 小雨 |
A | 甲 | P(A1)= | P(A2)= | P(A3)= |
B | 乙 | P(B1)= | P(B2)= | P(B3)= |
C | 丙 | P(C1)= | P(C2)= | P(C3)= |
記“甲、乙、丙三地都恰為中雨”為事件E,
則P(E)=P(A2)P(B2)P(C2)= =
.
(Ⅱ)設甲、乙、丙三地達到理想狀態的概率分別為p1 , p2 , p3 ,
則 ,p2=p(B1)=
,p3=P(C2)+P(C3)=
,
ξ的可能取值為0,1,2,3,
P(ξ=0)=(1﹣p1)(1﹣p2)(1﹣p3)= =
,
P(ξ=1)=p1(1﹣p2)(1﹣p3)+(1﹣p1)p2(1﹣p3)+(1﹣p1)(1﹣p2)p3
= +
+
=
,
P(ξ=2)=p1p2(1﹣p3)+(1﹣p1)p2p3+p1(1﹣p2)p3
= +
=
,
P(ξ=3)=p1p2p3= =
,
∴隨機變量ξ的分布列為:
ξ | 0 | 1 | 2 | 3 |
P |
Eξ= =
.
【解析】(Ⅰ)由人工降雨模擬試驗的統計數據,用A,B,C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,求出大雨、中雨、小雨的概率分布表,由此利用相互獨立事件概率計算公式能求出甲、乙、丙三地都恰為中雨的概率.(Ⅱ)設甲、乙、丙三地達到理想狀態的概率分別為p1 , p2 , p3 , 則 ,p2=p(B1)=
,p3=P(C2)+P(C3)=
,ξ的可能取值為0,1,2,3,分別求出相應的概率,由此能求出隨機變量ξ的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】已知橢圓 (a>b>0)短軸的端點P(0,b)、Q(0,﹣b),長軸的一個端點為M,AB為經過橢圓中心且不在坐標軸上的一條弦,若PA、PB的斜率之積等于﹣
,則P到直線QM的距離為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,已知點D,E分別在邊AB,BC上,且AB=3AD,BC=2BE.
(Ⅰ)用向量 ,
表示
.
(Ⅱ)設AB=6,AC=4,A=60°,求線段DE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現,當圓內接多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,由此創立了割圓術,利用割圓術劉徽得到了圓周率精確到小數點后面兩位的近似值3,14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為( ) 參考數據: ,sin15°≈0.2588,sin7.5°≈0.1305.
A.12
B.24
C.48
D.96
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題為真命題的是( )
A.若 x>y>0,則 ln x+ln y>0
B.“φ= ”是“函數 y=sin(2x+φ) 為偶函數”的充要條件
C.?x0∈(﹣∞,0),使 3x0<4x0成立
D.已知兩個平面α,β,若兩條異面直線m,n滿足m?α,n?β且 m∥β,n∥α,則α∥β
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=x ln x﹣ax2+(2a﹣1)x,a∈R.
(Ⅰ)令g(x)=f′(x ),求 g(x)的單調區間;
(Ⅱ)當a≤0時,直線 y=t(﹣1<t<0)與f(x)的圖象有兩個交點A(x1 , t),B(x2 , t),且x1<x2 , 求證:x1+x2>2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4cosxsin(x+ )+m(m∈R),當x∈[0,
]時,f(x)的最小值為﹣1.
(Ⅰ)求m的值;
(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延長AB至D,使BC=BD,且AD=5,求△ACD的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】解答題。
(1)已知橢圓C: =1(a>b>0)的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
x﹣
y+12=0相切.求橢圓C的方程;
(2)已知⊙A1:(x+2)2+y2=12和點A2(2,0),求過點A2且與⊙A1相切的動圓圓心P的軌跡方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com