精英家教網 > 高中數學 > 題目詳情

已知C點在⊙O直徑BE的延長線上,CA切⊙O于A 點,CD是∠ACB的平分線且交AE于點F,交AB于點D

(1)求∠ADF的度數; (2)若AB=AC,求的值.

(1)(2)

解析試題分析:(1)的切線,,又的平分線,
,得

(2),,
   又
 在中,
考點:平面幾何求解
點評:求解本題充分利用直線與圓相切出現的相等的角及產生的邊長的相等關系求解

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,在中,的角平分線,的外接圓交.

(1)求證:;
(2)當時,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知切⊙于點E,割線PBA交⊙于A、B兩點,∠APE的平分線和AE、BE分別交于點C、D.

求證:
(Ⅰ)
(Ⅱ)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,是圓的直徑,為圓上一點,,垂足為,點為圓上任一點,交于點,于點

求證:(1);(2)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.求證:(1)△ABC≌△DCB   (2)DE·DC=AE·BD.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,PA為圓的切線,A為切點,PBC是過點O的割線,PA=10,PB=5,的平分線與BC和圓分別交于點D和E。

(1)求證:;
(2)求AD·AE的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,AB、CD是⊙O的兩條平行切線,B、D為切點,AC為⊙O的切線,切點為E.過A作AF⊥CD,F為垂足.

(1)求證:四邊形ABDF是矩形;
(2)若AB=4,CD=9,求⊙O的半徑.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

圓O是的外接圓,過點C的圓的切線與AB的延長線交于點D,,AB=BC=3,求BD以及AC的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,AB、CD是圓的兩條平行弦,BE//AC,BE交CD于E、交圓于F,過A點的切線交DC的延長線于P,PC=ED=1,PA=2.
(I)求AC的長;
(II)求證:BE=EF.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视