設橢圓E:+
=1(a>b>0)的上焦點是F1,過點P(3,4)和F1作直線PF1交橢圓于A,B兩點,已知A(
,
).
(1)求橢圓E的方程;
(2)設點C是橢圓E上到直線PF1距離最遠的點,求C點的坐標.
科目:高中數學 來源: 題型:解答題
已知點,直線
,動點P到點F的距離與到直線
的距離相等.
(1)求動點P的軌跡C的方程;(2)直線與曲線C交于A,B兩點,若曲線C上存在點D使得四邊形FABD為平行四邊形,求b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點,直線
,動點P到點F的距離與到直線
的距離相等.
(1)求動點P的軌跡C的方程;
(2)直線與曲線C交于A,B兩點,若曲線C上存在點D使得四邊形FABD為平行四邊形,求b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)過點A(1,-2).
(1)求拋物線C的方程,并求其準線方程;
(2)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率
,
分別為橢圓的長軸和短軸的端點,
為
中點,
為坐標原點,且
.
(1)求橢圓的方程;
(2)過點的直線
交橢圓于
兩點,求
面積最大時,直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖5,為坐標原點,雙曲線
和橢圓
均過點
,且以
的兩個頂點和
的兩個焦點為頂點的四邊形是面積為2的正方形.
(1)求的方程;
(2)是否存在直線,使得
與
交于
兩點,與
只有一個公共點,且
?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線的兩個焦點為
、
點
在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com