【題目】已知首項是1的兩個數列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數列{cn}的通項公式;
(2)若bn=3n﹣1 , 求數列{an}的前n項和Sn .
【答案】
(1)解:∵anbn+1﹣an+1bn+2bn+1bn=0,cn= ,
∴cn﹣cn+1+2=0,
∴cn+1﹣cn=2,
∵首項是1的兩個數列{an},{bn},
∴數列{cn}是以1為首項,2為公差的等差數列,
∴cn=2n﹣1
(2)解:∵bn=3n﹣1,cn= ,
∴an=(2n﹣1)3n﹣1,
∴Sn=1×30+3×31+…+(2n﹣1)×3n﹣1,
∴3Sn=1×3+3×32+…+(2n﹣1)×3n,
∴﹣2Sn=1+2(31+…+3n﹣1)﹣(2n﹣1)3n,
∴Sn=(n﹣1)3n+1
【解析】(1)由anbn+1﹣an+1bn+2bn+1bn=0,cn= ,可得數列{cn}是以1為首項,2為公差的等差數列,即可求數列{cn}的通項公式;(2)用錯位相減法來求和.
科目:高中數學 來源: 題型:
【題目】在一次耐力和體能測試之后,某校對其甲、乙、丙、丁四位學生的耐力成績()和體能成績(
)進行回歸分析,求得回歸直線方程為
.由于某種原因,成績表(如下表所示)中缺失了乙的耐力和體能成績.
甲 | 乙 | 丙 | 丁 | |
耐力成績(X) | 7.5 | m | 8 | 8.5 |
體能成績(Y) | 8 | n | 8.5 | 9.5 |
綜合素質 ( | 15.5 | 16 | 16.5 | 18 |
(Ⅰ)請設法還原乙的耐力成績和體能成績
;
(Ⅱ)在區域性校際學生身體綜合素質比賽中,由甲、乙、丙、丁四位學生組成學校代表隊參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學校代表中隨機抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質分高于16分,就能為所在學校贏得一枚榮譽獎章.若記比賽中贏得榮譽獎章的枚數為,試根據上表所提供數據,預測該校所獲獎章數
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= x2+ax﹣lnx(a∈R).
(1)當a=1時,求函數f(x)的極值;
(2)當a>1時,討論函數f(x)的單調性;
(3)若對任意a∈(3,4)及任意x1 , x2∈[1,2],恒有 m+ln2>|f(x1)﹣f(x2)|成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某單位有50名職工,現要從中抽取 10名職工,將全體職工隨機按1~50編號,并按編號順序平均分成10組,按各組內抽取的編號依次增加5進行系統抽樣.
(Ⅰ)若第5組抽出的號碼為22,寫出所有被抽出職工的號碼;
(Ⅱ)分別統計這10名職工的體重(單位:公斤),獲得體重數據的莖葉圖如圖所示,求該樣本的平均數、中位數和方差;
(Ⅲ)在(Ⅱ)的條件下,從這10名職工中隨機抽取兩名體重不輕于73公斤(73公斤)的職工,求體重為81公斤的職工被抽取到的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)內取到一個最大值和一個最小值,且當x=π時,y有最大值3,當x=6π時,y有最小值﹣3.
(1)求此函數解析式;
(2)寫出該函數的單調遞增區間;
(3)是否存在實數m,滿足不等式Asin( )>Asin(
)?若存在,求出m值(或范圍),若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙、丁四個物體同時從某一點出發向同一個方向運動,其路程fi(x)(i=1,2,3,4)關于時間x(x≥0)的函數關系式分別為f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下結論:
①當x>1時,甲走在最前面;
②當x>1時,乙走在最前面;
③當0<x<1時,丁走在最前面,當x>1時,丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運動下去,最終走在最前面的是甲.
其中,正確結論的序號為(把正確結論的序號都填上,多填或少填均不得分)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】曲線是平面內與兩個定點
,
的距離之積等于
的點的軌跡.給出下列命題:
①曲線過坐標原點;
②曲線關于坐標軸對稱;
③若點在曲線
上,則
的周長有最小值
;
④若點在曲線
上,則
面積有最大值
.
其中正確命題的個數為
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有甲、乙、丙、丁4個學生課余參加學校社團文學社與街舞社的活動,每人參加且只能參加一個社團的活動,且參加每個社團是等可能的.
(1)求文學社和街舞社都至少有1人參加的概率;
(2)求甲、乙同在一個社團,且丙、丁不同在一個社團的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com