【題目】在直角坐標系中,直線
的參數方程是
為參數),曲線
的參數方程是
為參數),以
為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求直線和曲線
的極坐標方程;
(2)已知射線與曲線
交于
兩點,射線
與直線
交于
點,若
的面積為1,求
的值和弦長
.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的方程
,
(1)求直線和圓
的直角坐標方程;
(3)設圓與直線
交于點
、
,若點
的坐標為
,求
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為評估設備生產某種零件的性能,從設備
生產零件的流水線上隨機抽取100個零件作為樣本,測量其直徑后,整理得到如表:
直徑/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經計算,樣本的平均值,標準差
,以頻率值作為概率的估計值.
(1)為評判一臺設備的性能,從該設備加工的零件中任意抽取一件,記其直徑為,并根據以下不等式進行評判(
表示相應事件的頻率):①
;②
;③
.評判規則為:若同時滿足上述三個不等式,則設備性能等級為甲;僅滿足其中兩個,則設備性能等級為乙;若僅滿足其中一個,則設備性能等級為丙;若全部不滿足,則設備性能等級為。嚺袛嘣O備
的性能等級.
(2)將直徑小于等于或直徑大于
的零件認為是次品.
(i)從設備的生產流水線上任意抽取2個零件,計算其中次品個數
的數學期望
;
(ii)從樣本中任意抽取2個零件,計算其中次品個數的數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱的各棱長均為2,側面
底面
,側棱
與底面
所成的角為
.
(Ⅰ)求直線與底面
所成的角;
(Ⅱ)在線段上是否存在點
,使得平面
平面
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,
(其中
)是曲線
上的兩點,
,
兩點在
軸上的射影分別為點
,
且
.
(1)當點的坐標為
時,求直線
的方程;
(2)記的面積為
,梯形
的面積為
,求
的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“克拉茨猜想”又稱“猜想”,是德國數學家洛薩克拉茨在1950年世界數學家大會上公布的一個猜想:任給一個正整數
,如果
是偶數,就將它減半;如果
為奇數就將它乘3加1,不斷重復這樣的運算,經過有限步后,最終都能夠得到1.己知正整數
經過6次運算后得到1,則
的值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,設橢圓
的左焦點為
,短軸的兩個端點分別為
,且
,點
在
上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓
和圓
分別相切于
,
兩點,當
面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(5分)《九章算術》“竹九節”問題:現有一根9節的竹子,自上而下各節的容積成等差數列,上面4節的容積共3升,下面3節的容積共4升,則第五節的容積為( )
A. 1升 B. 升 C.
升 D.
升
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中不正確的個數是( )
①若直線上有無數個點不在平面
內,則
;
②和兩條異面直線都相交的兩條直線異面;
③如果兩條平行直線中的一條與一個平面平行,那么另一條也與這個平面平行;
④一條直線和兩條異面直線都相交,則它們可以確定兩個平面.
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com