【題目】在銳角△ABC中,2asinB=b. (Ⅰ)求∠A的大。
(Ⅱ)求 sinB﹣cos(C+
)的取值范圍.
【答案】解:(Ⅰ)利用正弦定理化簡b=2asinB,得:sinB=2sinAsinB, ∵sinB≠0,
∴sinA= ,
∵A為銳角,
∴A= .
(Ⅱ)∵ =
sin(
﹣C)﹣cos(C+
)=
sin(C+
)﹣cos(C+
)=2sinC,
又∵A= ,△ABC為銳角三角形,可得:
<C<
,
∴ <sinC<1,
∴ =2sinC∈(
,2).
【解析】(Ⅰ)利用正弦定理化簡已知的等式,根據sinB不為0得出sinA的值,由A為銳角三角形的內角,利用特殊角的三角函數值即可求出A的度數.(Ⅱ)先化簡,再求出角C的范圍,根據正弦函數的圖象即可求出
【考點精析】通過靈活運用正弦定理的定義,掌握正弦定理:即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,AC=2ED,AC∥平面EDB,AC⊥平面BCD,平面ACDE⊥平面ABC.
(Ⅰ)求證:AC∥ED;
(Ⅱ)求證:DC⊥BC;
(Ⅲ)當BC=CD=DE=1時,求二面角A﹣BE﹣D的余弦值;
(Ⅳ)在棱AB上是否存在點P滿足EP∥平面BDC;
(Ⅴ)設 =k,是否存在k滿足平面ABE⊥平面CBE?若存在求出k值,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若無窮數列{an}滿足:k∈N* , 對于 ,都有an+k﹣an=d(其中d為常數),則稱{an}具有性質“P(k,n0 , d)”. (Ⅰ)若{an}具有性質“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3;
(Ⅱ)若無窮數列{bn}是等差數列,無窮數列{cn}是公比為正數的等比數列,b1=c3=2,b3=c1=8,an=bn+cn , 判斷{an}是否具有性質“P(2,1,0)”,并說明理由;
(Ⅲ)設{an}既具有性質“P(i,2,d1)”,又具有性質“P(j,2,d2)”,其中i,j∈N* , i<j,i,j互質,求證:{an}具有性質“ ”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx,g(x)= +x﹣a(a∈R). (Ⅰ)若直線x=m(m>0)與曲線y=f(x)和y=g(x)分別交于M,N兩點.設曲線y=f(x)在點M處的切線為l1 , y=g(x)在點N處的切線為l2 .
(ⅰ)當m=e時,若l1⊥l2 , 求a的值;
(ⅱ)若l1∥l2 , 求a的最大值;
(Ⅱ)設函數h(x)=f(x)﹣g(x)在其定義域內恰有兩個不同的極值點x1 , x2 , 且x1<x2 . 若λ>0,且λlnx2﹣λ>1﹣lnx1恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C1:y2=8ax(a>0),直線l傾斜角是45°且過拋物線C1的焦點,直線l被拋物線C1截得的線段長是16,雙曲線C2: ﹣
=1的一個焦點在拋物線C1的準線上,則直線l與y軸的交點P到雙曲線C2的一條漸近線的距離是( )
A.2
B.
C.
D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】幾個月前,成都街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題,然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或將共享單車占為“私有”等. 為此,某機構就是否支持發展共享單車隨機調查了50人,他們年齡的分布及支持發展共享單車的人數統計如表:
年齡 | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
受訪人數 | 5 | 6 | 15 | 9 | 10 | 5 |
支持發展 | 4 | 5 | 12 | 9 | 7 | 3 |
(1)由以上統計數據填寫下面的2×2列聯表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發展共享單車有關系;
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(2)若對年齡在[15,20)[20,25)的被調查人中隨機選取兩人進行調查,記選中的4人中支持發展共享單車的人數為X,求隨機變量X的分布列及數學期望. 參考數據:
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2= ,其中n=a+b+c+d.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com