Ӣҽ̾W > ДW > }ĿԔ
WƼСMӋCģM׃܉ԇ.OӋˆD:\(형rᘷ)܉E̞,׃܉(\܉EəEA׃钁タ)󷵻ص܉EyS錦QS,M(0,)cĒタČ,cD(8,0).^ycA(4,0),B(6,0)ͬrۙ.

(1)׃܉\܉Eڵ;

(2)ԇ:xSϷr,^ycA,Byxľxքeٕr,l׃܉ָ?

(1)O̞y=ax2+,}֪,

0=a64+.

a=-.

̞y=-.

(2)O׃܉cC(x,y),

“4y2-7y-36=0.

 y=4y=-(},ȥ).

y=4.

x=6x=-6(},ȥ).

Cc˞(6,4),˕r|AC|=,|BC|=4.

:^ycA,ByAC,BCxքe,4r,l׃܉ָ.

cu}ьH}D锵W}D֪lĒタĶDĽc}WČH.

ϵд
P}

ĿДW Դ

Ӣҽ̾WWƼСMӋCģM׃܉ԇ򞣮OӋD\У형rᘷ򣩵܉E̞
x2
100
+
y2
25
=1
׃܉\܉EəEA׃钁タ󷵻ص܉EyS錦QSM(0
64
7
)
cĒタČcD80^ycA40B60ͬrۙ
1׃܉\܉Eڵ
2ԇxSϷr^ycAByxľxքeٕrl׃܉ָ

鿴𰸺ͽ>>

ĿДW Դ

2006•ģ첢׌ԽԽꌦ켼gldȤijWƼСMӋCģM׃܉ԇOӋ
D\У형rᘷ򣩵܉E̞
x2
100
+
y2
25
=1׃܉\܉EəEA׃钁タ󷵻ص܉EyS
QSM0
64
7
cĒタČcD80^ycA40B60ͬrۙԇxSϷr^ycAByxľxքe
2
5
4
2
5
4
rl׃܉ָ

鿴𰸺ͽ>>

ĿДW Դ

WƼСMӋCģM׃܉ԇ.OӋˆD\(형rᘷ)܉E̞=1׃܉(\܉EəEA׃钁タ)󷵻ص܉EyS錦QSM(0,)cĒタČcD(8,0).^ycA(4,0)B(60)ͬrۙ.

(1)׃܉\܉Eڵ

(2)ԇxSϷr^ycAByxľxքeٕr.l׃܉ָ

鿴𰸺ͽ>>

ĿДW Դ

WƼСMӋCģM׃܉ԇ. OӋD\У형rᘷ򣩵܉E̞׃܉\܉EəEA׃钁タ󷵻ص܉ES錦QS cĒタČc. ^ycͬrۙ.׃܉\܉Eڵ

鿴𰸺ͽ>>

ĿДW Դ

WƼСMӋCģM׃܉ԇ. OӋD\У형rᘷ򣩵܉E̞׃܉\܉EəEA׃钁タ󷵻ص܉ES錦QS cĒタČc. ^ycͬrۙ. ԇSϷr^ycyxľxքeٕrl׃܉ָ

鿴𰸺ͽ>>

ͬԴ
久久精品免费一区二区视