精英家教網 > 高中數學 > 題目詳情
,對使
,則的取值范圍是
A.B.C.D.
A

試題分析:根據題意,由于,對使,則只要滿足二次函數的函數的值域在的范圍內即可,結合二次函數性質可知,在時值域為是遞增的一次函數可知,,則可知包含于集合中可知,參數a的范圍是,選A.
點評:解決的關鍵是理解全稱命題和特稱命題的關系,以及準確的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(12分)已知函數是定義在上的偶函數,已知當時,.
(1)求函數的解析式;
(2)求函數的單調遞增區間;
(3)求在區間上的值域。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數,則____________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下列函數中,既是奇函數又是增函數的是 
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義在R上的函數,則的圖像與直線的交點為、,則下列說法錯誤的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)設計一副宣傳畫,要求畫面積為4840,畫面的寬與高的比為,畫面的上,下各留8空白,左右各留5空白,怎樣確定畫面的高于寬尺寸,能使宣傳畫所用紙張面積最。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
我們把定義在上,且滿足(其中常數滿足)的函數叫做似周期函數.
(1)若某個似周期函數滿足且圖像關于直線對稱.求證:函數是偶函數;
(2)當時,某個似周期函數在時的解析式為,求函數,的解析式;
(3)對于確定的時,,試研究似周期函數函數在區間上是否可能是單調函數?若可能,求出的取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題共8分)
提高二環路的車輛通行能力可有效改善整個城區的交通狀況,在一般情況下,二環路上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數。當二環路上的車流密度達到600輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過60輛/千米時,車流速度為80千米/小時,研究表明:當60≤x≤600時,車流速度v是車流密度x的一次函數。
(Ⅰ)當0≤x≤600時,求函數f(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過二環路上某觀測點的車輛數,單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值。(精確到1輛/小時)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)設,其中為正實數。
(1)當時,求的極值點;
(2)若為R上的單調函數,求的取值范圍。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视