精英家教網 > 高中數學 > 題目詳情

已知橢圓W的中心在原點,焦點在軸上,離心率為,兩條準線間的距離為6. 橢圓W的左焦點為,過左準線與軸的交點任作一條斜率不為零的直線與橢圓W交于不同的兩點、,點關于軸的對稱點為.

(Ⅰ)求橢圓W的方程;

(Ⅱ)求證: ();

(Ⅲ)求面積的最大值.

(Ⅰ)橢圓W的方程為

(Ⅱ)見解析

(Ⅲ)面積的最大值為


解析:

(Ⅰ)設橢圓W的方程為,由題意可知

解得,,

所以橢圓W的方程為.……………………………………………4分

(Ⅱ)解法1:因為左準線方程為,所以點坐標為.于是可設直線 的方程為

.

由直線與橢圓W交于、兩點,可知

,解得

設點的坐標分別為,,

,,

因為,

所以,.

又因為

所以.    ……………………………………………………………10分

解法2:因為左準線方程為,所以點坐標為.

于是可設直線的方程為,點的坐標分別為,,

則點的坐標為,,

由橢圓的第二定義可得

,

所以,三點共線,即.…………………………………10分

(Ⅲ)由題意知

 

    

     ,

當且僅當時“=”成立,

所以面積的最大值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓w的中心在原點,焦點在x軸上,長軸長為4,離心率為
6
3
,△ABC的頂點A,B在橢圓w上,C在直線l:y=x+2上,且AB∥l.
(1)求橢圓w的方程;
(2)當AB邊通過坐標原點O時,求AB的長及△ABC的面積;
(3)當∠ABC=90°,且斜邊AC的長最大時,求AB所在直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓W的中心在原點,焦點在x軸上,離心率為
6
3
,兩條準線間的距離為6.橢圓W的左焦點為F,過左準線與x軸的交點M任作一條斜率不為零的直線l與橢圓W交于不同的兩點A、B,點A關于x軸的對稱點為C.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證:
CF
FB
(λ∈R);
(Ⅲ)求△MBC面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓W的中心在原點,焦點在x軸上,離心率為
6
3
,焦距為4,橢圓W的左焦點為F,過點M(-3,0)任作一條斜率不為零的直線l與橢圓W交于不同的兩點A、B,點A關于x軸的對稱點為C.
(1)求橢圓W的方程;
(2)
CF
FB
(λ∈R)是否成立?并說明理由;
(3)求△MBC面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•南寧模擬)已知橢圓W的中心在原點,焦點在x軸上,離心率為
6
3
,兩條準線間的距離為6,橢圓的左焦點為F,過左焦點與x軸的交點M任作一條斜率不為零的直線l與橢圓W交于不同的兩點A、B,點A關于x軸的對稱點為C.
(1)求橢圓W的方程;
(2)求證:
CF
FB
(λ∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓W的中心在原點,焦點在X軸上,離心率為
6
3
,橢圓短軸的一個端點與兩焦點構成的三角形的面積為2
2
,橢圓W的左焦點為F,過x軸的一點M(-3,0)任作一條斜率不為零的直線L與橢圓W交于不同的兩點A、B,點A關于X軸的對稱點為C.
(1)求橢圓W的方程;
(2)求證:
CF
FB
(λ∈R);
(3)求△MBC面積S的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视