【題目】已知函數f(x)的圖象在點(x0 , f(x0))處的切線方程l:y=g(x),若函數f(x)滿足x∈I(其中I為函數f(x)的定義域),當x≠x0時,[f(x)﹣g(x)](x﹣x0)>0恒成立,則稱x0為函數f(x)的“穿越點”.已知函數f(x)=lnx﹣ x2﹣
在(0,e]上存在一個“穿越點”,則a的取值范圍為( )
A.[ ,+∞)??
B.(﹣1, ]??
C.[﹣ ,1)??
D.(﹣∞,﹣ ]
科目:高中數學 來源: 題型:
【題目】如圖(1)所示,在直角梯形ABCD中, ,E是AD的中點,O是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖(2)所示.
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若a1=1,對任意的n∈N* , 都有an>0,且nan+12﹣(2n﹣1)an+1an﹣2an2=0設M(x)表示整數x的個位數字,則M(a2017)= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列 的前n項和為Sn
,且滿足:
① ;②
,其中
且
.
(1)求p的值;
(2)數列 能否是等比數列?請說明理由;
(3)求證:當r 2時,數列
是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,四邊形ABCD為直角梯形,AD∥BC,AD⊥AB,AD=1,BC=2,E為CD上一點,F為BE的中點,且DE=1,EC=2,現將梯形沿BE折疊(如圖2),使平面BCE⊥ABED.
(1)求證:平面ACE⊥平面BCE;
(2)能否在邊AB上找到一點P(端點除外)使平面ACE與平面PCF所成角的余弦值為 ?若存在,試確定點P的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=f(x)在[0,2]上單調遞增,且函數f(x+2)是偶函數,則下列結論成立的是( )
A.f(1)<f( )<f(
)??
B.f( )<f(1)<f(
)??
C.f( )<f(
)<f(1)??
D.f( )<f(1)<f(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com