【題目】關于函數f(x)=2sin(3x﹣ ),有下列命題:①其表達式可改寫為y=2cos(3x﹣
);②y=f(x)的最小正周期為
;③y=f(x)在區間(
,
)上是增函數;④將函數y=2sin3x的圖象上所有點向左平行移動
個單位長度就得到函數y=f(x)的圖象.其中正確的命題的序號是(注:將你認為正確的命題序號都填上).
【答案】②③
【解析】函數 =2sin(3x﹣
﹣
)=﹣2cos(3x﹣
),故①不正確.
函數 ,T=
=
,故最小正周期是
,故②正確.
函數 的單調增區間為2kπ﹣
≤3x﹣
≤2kπ+
,解得
﹣
≤x≤
+
,而
是其中一部分,故③正確.
把y=2sin3x的圖象向左平行移動 個單位而得到 y=2sin3(x+
)=,故④不正確.所以答案是②③
【考點精析】通過靈活運用正弦函數的單調性和函數y=Asin(ωx+φ)的圖象變換,掌握正弦函數的單調性:在上是增函數;在
上是減函數;圖象上所有點向左(右)平移
個單位長度,得到函數
的圖象;再將函數
的圖象上所有點的橫坐標伸長(縮短)到原來的
倍(縱坐標不變),得到函數
的圖象;再將函數
的圖象上所有點的縱坐標伸長(縮短)到原來的
倍(橫坐標不變),得到函數
的圖象即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一點,O為坐標原點,則直線OA與y=x2+1有交點的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,為了得到這個函數的圖象,只要將y=sinx(x∈R)的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的
倍,縱坐標不變
B.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的
倍,縱坐標不變
D.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合M={x|x2﹣3x≤10},N={x|a﹣1≤x≤2a+1}.
(1)若a=2,求(RM)∪N;
(2)若M∪N=M,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點M( ,0)的直線l與拋物線y2=2px(p>0)交于A,B兩點,且
=﹣3,其中O為坐標原點.
(1)求p的值;
(2)當|AM|+4|BM|最小時,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+1),g(x)=loga ,(a>0且a≠1).記F(x)=2f(x)+g(x).
(1)求函數F(x)的零點;
(2)若關于x的方程F(x)﹣2m2+3m+5=0在區間[0,1)內僅有一解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過雙曲線x2﹣ =1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點分別為M,N,則|PM|2﹣|PN|2的最小值為( )
A.10
B.13
C.16
D.19
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com