【題目】為響應國家號召,打贏脫貧致富攻堅戰,武漢大學團隊帶領湖北省大悟縣新城鎮熊灣村村民建立有機、健康、高端、綠色的蔬菜基地,并策劃“生產、運輸、銷售”一體化的直銷供應模式,據統計,當地村民兩年時間成功脫貧.蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市,每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據經驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統計了100天有機蔬菜在每天的前8小時內的銷售量(單位:份),制成如下表格(注:,且
).若以100天記錄的頻率作為每日前8小時銷售量發生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據,若購進17份比購進18份的利潤的期望值大,則x的最小值是________.
前8小時內銷售量 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數 | 10 | x | 16 | 16 | 15 | 13 | y |
科目:高中數學 來源: 題型:
【題目】已知定義在實數集上的偶函數
和奇函數
滿足
.
(1)求與
的解析式;
(2)若定義在實數集上的以2為最小正周期的周期函數
,當
時,
,試求
在閉區間
上的表達式,并證明
在閉區間
上單調遞減;
(3)設(其中
為常數),若
對于
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以數列的任意相鄰兩項為坐標的點
,均在一次函數y=2x+k的圖象上,數列
滿足
,且
.
(1)求證數列為等比數列,并求出數列
的公比;
(2)設數列,
的前n項和分別為Sn,Tn,若S6=T4,S5=﹣9,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現對某市工薪階層關于“樓市限購令”的態度進行調查,隨機抽調了50人,他們月收入的頻數分布及對“樓市限購令”贊成人數如表:
月收入(單位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)由以上統計數據填下面2×2列聯表并問是否有99%的把握認為“月收入以5500為分界點”對“樓市限購令”的態度有差異;
月收入低于55百元的人數 | 月收入不低于55百元的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若采用分層抽樣在月收入在[15,25),[25,35)的被調查人中共隨機抽取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求收到“紅包”獎勵的3人中至少有1人收入在[15,25)的概率.
參考公式:K2,其中n=a+b+c+d.
參考數據:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】先閱讀參考材料,再解決此問題:
參考材料:求拋物線弧(
)與x軸及直線
所圍成的封閉圖形的面積
解:把區間進行n等分,得
個分點
(
),過分點
,作x軸的垂線,交拋物線于
,并如圖構造
個矩形,先求出
個矩形的面積和
,再求
,即是封閉圖形的面積,又每個矩形的寬為
,第i個矩形的高為
,所以第i個矩形的面積為
;
所以封閉圖形的面積為
閱讀以上材料,并解決此問題:已知對任意大于4的正整數n,
不等式恒成立,
則實數a的取值范圍為______
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,和
都是正三角形,
, E、F分別是AC、BC的中點,且PD⊥AB于D.
(Ⅰ)證明:直線⊥平面
;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的通項公式為 an=(n﹣k1)(n﹣k2),其中k1,k2∈Z:
(1)試寫出一組k1,k2∈Z的值,使得數列{an}中的各項均為正數;
(2)若k1=1、k2∈N*,數列{bn}滿足bn=,且對任意m∈N*(m≠3),均有b3<bm,寫出所有滿足條件的k2的值;
(3)若0<k1<k2,數列{cn}滿足cn=an+|an|,其前n項和為Sn,且使ci=cj≠0(i,j∈N*,i<j)的i和j有且僅有4組,S1、S2、…、Sn中至少3個連續項的值相等,其他項的值均不相等,求k1,k2的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com