精英家教網 > 高中數學 > 題目詳情
設O是平面ABC外一點,點M滿足條件
OM
=
3
4
OA
+
1
8
OB
+
1
8
OC
,則直線AM( 。
A.與平面ABC平行B.是平面ABC的斜線
C.是平面ABC的垂線D.在平面ABC內
OM
=
3
4
OM
+
1
8
OM
+
1
8
OM

∴由
OM
=
3
4
OA
+
1
8
OB
+
1
8
OC
,得
3
4
OM
+
1
8
OM
+
1
8
OM
=
3
4
OA
+
1
8
OB
+
1
8
OC

移項,得
3
4
(
OM
-
OA
)=
1
8
(
OB
-
OM
)+
1
8
(
OC
-
OM
)

3
4
AM
=
1
8
MB
+
1
8
MC
,即
MA
=-
1
6
MB
-
1
6
MC

由此可得向量
MA
、
MB
、
MC
是共面向量,由此可得直線AM在平面ABC內
故選:D
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設O是平面ABC外一點,點M滿足條件
OM
=
3
4
OA
+
1
8
OB
+
1
8
OC
,則直線AM( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網在△ABC中,a,b,c分別為內角A,B,C所對的邊,且滿足
sinB+sinC
sinA
=
2-cosB-cosC
cosA

(1)證明:b+c=2a;
(2)如圖,點O是△ABC外一點,設∠AOB=θ(0<θ<π),OA=2OB=2,當b=c時,求平面四邊形OACB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設⊙O為不等邊△ABC的外接圓,△ABC內角A,B,C所對邊的長分別為a,b,c,P是△ABC所在平面內的一點,且滿足
PA
PB
=
c
b
PA
PC
+
b-c
b
PA2
(P與A不重合).Q為△ABC所在平面外一點,QA=QB=QC.有下列命題:
①若QA=QP,∠BAC=90°,則點Q在平面ABC上的射影恰在直線AP上;
②若QA=QP,則
QP
PB
=
QP
PC
;
③若QA>QP,∠BAC=90°,則
BP
CP
=
AB
AC
;
④若QA>QP,則P在△ABC內部的概率為
S△ABC
S⊙O
(S△ABC,S⊙O分別表示△ABC與⊙O的面積).
其中不正確的命題有
 
(寫出所有不正確命題的序號).

查看答案和解析>>

科目:高中數學 來源:2012-2013學年黑龍江省哈爾濱九中高二(上)期末數學試卷(文科)(解析版) 題型:選擇題

設O是平面ABC外一點,點M滿足條件,則直線AM( )
A.與平面ABC平行
B.是平面ABC的斜線
C.是平面ABC的垂線
D.在平面ABC內

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视