精英家教網 > 高中數學 > 題目詳情

已知函數
(1)討論函數的單調性;
(2)若函數的圖象在點處的切線的傾斜角為,對于任意的
 ,函數在區間 上總不是單調函數,
求實數的取值范圍;
(3)求證 

(1)a>0,
當a=0無單調區間,當a<0,
(2)
(3)構造函數借助于不等式來得到證明。

解析試題分析:.解:1)根據題意,由于,在可知導數為,因為定義域為x>0,那么對于參數a討論可知:
,
時,
時,
時,
2)

,

,

, 

,可證,

3)令

因為。。。。①
。。。。。②
又①式中“=”僅在n=1時成立,又,所以②“=”不成立
證畢。
考點:導數的運用
點評:主要是考查了導數在研究函數中的運用,以及導數單調性和不等式的綜合運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)求函數的極大值.
(Ⅱ)求證:存在,使;
(Ⅲ)對于函數定義域內的任意實數x,若存在常數k,b,使得都成立,則稱直線為函數的分界線.試探究函數是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知 
(1)求的最小值
(2)由(1)推出的最小值C
(不必寫出推理過程,只要求寫出結果)
(3)在(2)的條件下,已知函數若對于任意的,恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.若,求的值;當時,求的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,
(1)討論的單調區間;
(2)若對任意的,且,有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=x3-3ax2+3bx的圖像與直線12x+y-1=0相切于點(1,-11)。
(1)求a,b的值;
(2)討論函數f(x)的單調性。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求函數的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)若函數圖像上的點到直線距離的最小值為,求的值;
(2)關于的不等式的解集中的整數恰有3個,求實數的取值范圍;
(3)對于函數定義域上的任意實數,若存在常數,使得都成立,則稱直線為函數
“分界線”.設,試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數(1)當時,求的最大值;(2)令,(),其圖象上任意一點處切線的斜率恒成立,求實數的取值范圍;(3)當,,方程有唯一實數解,求正數的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视