精英家教網 > 高中數學 > 題目詳情

【題目】若數列對任意滿足,下面給出關于數列的四個命題:①可以是等差數列,②可以是等比數列;③可以既是等差又是等比數列;④可以既不是等差又不是等比數列;則上述命題中,正確的個數為(

A. 1個B. 2個C. 3個D. 4個

【答案】B

【解析】

由已知可得an﹣an﹣1=2,或an=2an﹣1,結合等差數列和等比數列的定義,可得答案.

∵數列{an}對任意n≥2(n∈N)滿足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1

∴①{an}可以是公差為2的等差數列,正確;

②{an}可以是公比為2的等比數列,正確;

③若{an}既是等差又是等比數列,即此時公差為0,公比為1,由①②得,③錯誤;

④由 (an﹣an﹣1﹣2)(an﹣2an﹣1)=0, an﹣an﹣1=2或an=2an﹣1,

當數列為:1,3,6,8,16……

得{an}既不是等差也不是等比數列,故④正確;

故選:C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我國年新年賀歲大片《流浪地球》自上映以來引發了社會的廣泛關注,受到了觀眾的普遍好評.假設男性觀眾認為《流浪地球》好看的概率為,女性觀眾認為《流浪地球》好看的概率為.某機構就《流浪地球》是否好看的問題隨機采訪了名觀眾(其中女).

(1)求這名觀眾中女性認為好看的人數比男性認為好看的人數多的概率;

(2)設表示這名觀眾中認為《流浪地球》好看的人數,求的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓中心在坐標原點,焦點在軸上,且過,直線與橢圓交于,兩點(,兩點不是左右頂點),若直線的斜率為時,弦的中點在直線上.

(Ⅰ)求橢圓的方程.

(Ⅱ)若以,兩點為直徑的圓過橢圓的右頂點,則直線是否經過定點,若是,求出定點坐標,若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的中心在原點,焦點F1F2在坐標軸上,漸近線方程為y=±x,且雙曲線過點P(4,-).

(1)求雙曲線的方程;

(2)若點M(x1y1)在雙曲線上,的范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為常數

(1)處取得極值時,若關于x的方程 上恰有兩個不相等的實數根,求實數b的取值范圍.

(2)若對任意的,總存在,使不等式 成立,求實數 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有窮數列中的每一項都是-1,0,1這三個數中的某一個數,,且,則有窮數列中值為0的項數是(

A. 1000B. 1010C. 1015D. 1030

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,若存在,使得,且對任意,均有(即是一個公差為的等差數列),則稱數列是一個長度為的“弱等差數列”.

(1)判斷下列數列是否為“弱等差數列”,并說明理由.

①1,3,5,7,9,11;

②2,,,,.

(2)證明:若,則數列為“弱等差數列”.

(3)對任意給定的正整數,若,是否總存在正整數,使得等比數列:是一個長度為的“弱等差數列”?若存在,給出證明;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,拋物線與直線 交于,兩點.

(1)當時,分別求拋物線在點處的切線方程;

(2)軸上是否存在點,使得當變動時,總有?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是  

A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球

C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视