精英家教網 > 高中數學 > 題目詳情

(本題滿分12分)
在直角坐標系中,動點到兩圓的圓心的距離的和等于.
(Ⅰ) 求動點的軌跡方程;
(Ⅱ) 以動點的軌跡與軸正半軸的交點C為直角頂點作此軌跡的內接等腰直角三角形ABC,試問:這樣的等腰直角三角形是否存在?若存在,有幾個?若不存在,請說明理由.

解:(Ⅰ)兩圓的圓心坐標分別為、,根據橢圓的定義可知,動點的軌跡為以、為焦點,長軸長等于的橢圓.
,所以,動點的軌跡方程
(Ⅱ)由(Ⅰ)得C點的坐標為
不妨設A、B兩點分居于y軸的左、右兩側,設CA的斜率為,
>0,CA所在直線的方程為.
代入橢圓方程并整理得.
.∴A點的坐標為.
.   同理,.
由|CA|=|CB|得,
解得
∴符合題意的等腰直角三角形一定存在,且有3個.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分12分)

在△ABC中,角A、B、C的對邊分別為a、b、c,且

??????(Ⅰ)求角A的大小;??????(Ⅱ)若,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分12分)

在平面直角坐標系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若實數λ使向量,λ,滿足λ2·(2=·。

(1)求點P的軌跡方程,并判斷P點的軌跡是怎樣的曲線;

(2)當λ=時,過點A1且斜率為1的直線與此時(1)中的曲線相交的另一點為B,能否在直線x=-9上找一點C,使ΔA1BC為正三角形(請說明理由)。

查看答案和解析>>

科目:高中數學 來源:2012-2013學年遼寧沈陽二中等重點中學協作體高三領航高考預測(二)文數學卷(解析版) 題型:解答題

(本題滿分12分)在分別為A,B,C所對的邊,

(1)判斷的形狀;

(2)若,求的取值范圍

 

查看答案和解析>>

科目:高中數學 來源:2013屆云南大理州賓川四中高二下學期4月考試文科數學試卷(解析版) 題型:解答題

(本題滿分12分)在各項為正的數列中,數列的前n項和滿足

(1)求;(2) 由(1)猜想數列的通項公式;(3) 求

 

查看答案和解析>>

科目:高中數學 來源:2013屆云南省高二上學期期末考試理科數學 題型:解答題

(本題滿分12分)在邊長為2的正方體中,E是BC的中點,F是的中點

(Ⅰ)求證:CF∥平面

(Ⅱ)求二面角的平面角的余弦值。

 

 

 

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视