【題目】在△ABC中,·
=0,|
|=12,|
|=15,l為線段BC的垂直平分線,l與BC交于點D,E為l上異于D的任意一點.
(1)求·
的值;
(2)判斷·
的值是否為一個常數,并說明理由.
科目:高中數學 來源: 題型:
【題目】有一段“三段論”,其推理是這樣的:對于可導函數,若
,則
是函數
的極值點,因為函數
滿足
,所以
是函數
的極值點”,結論以上推理
A. 大前提錯誤B. 小前提錯誤C. 推理形式錯誤D. 沒有錯誤
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 C:的離心率為
,以短軸為直徑的圓被直線 x+y-1 = 0 截得的弦長為
.
(1) 求橢圓 C 的方程;
(2) 設 A, B 分別為橢圓的左、右頂點, D 為橢圓右準線 l 與 x 軸的交點, E 為 l上的另一個點,直線 EB 與橢圓交于另一點F,是否存在點 E,使 R)? 若存在,求出點 E 的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業欲做一個介紹企業發展史的銘牌,銘牌的截面形狀是如圖所示的扇形環面(由扇形挖去扇形
后構成的).已知
,線段
與弧
、弧
的長度之和為
米,圓心角為
弧度.
(1)求關于
的函數解析式;
(2)記銘牌的截面面積為,試問
取何值時,
的值最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】本小題滿分13分)
工作人員需進入核電站完成某項具有高輻射危險的任務,每次只派一個人進去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內不能完成任務則撤出,再派下一個人.現在一共只有甲、乙、丙三個人可派,他們各自能完成任務的概率分別,假設
互不相等,且假定各人能否完成任務的事件相互獨立.
(1)如果按甲在先,乙次之,丙最后的順序派人,求任務能被完成的概率.若改變三個人被派出的先后順序,任務能被完成的概率是否發生變化?
(2)若按某指定順序派人,這三個人各自能完成任務的概率依次為,其中
是
的一個排列,求所需派出人員數目
的分布列和均值(數字期望)
;
(3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數目的均值(數字期望)達到最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①已知,
是正數,且
,則
;
②命題“,使得
”的否定是真命題;
③將化成二進位制數是
;
④某同學研究變量,
之間的相關關系,并求得回歸直線方程,他得出一個結論:
與
負相關且
,
其中正確的命題的序號是__________(把你認為正確的序號都填上).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com