精英家教網 > 高中數學 > 題目詳情
設直線l:x=my+n(n>0)過點A(4,4),若可行域的外接圓直徑為,則實數n的值是(    )。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知m>1,直線l:x-my-
m2
2
=0,橢圓C:
x2
m2
+y2=1,F1、F2分別為橢圓C的左、右焦點.
(Ⅰ)當直線l過右焦點F2時,求直線l的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,△AF1F2,△BF1F2的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網設橢圓M:
y2
a2
+
x2
b2
=1(a>b>0)的離心率為
7
4
,點A(0,a),B(-b,0),原點O到直線AB的距離為
12
5
,P是橢圓的右頂點,直線l:x=my-n與橢圓M相交于C,D兩點,且
PC
PD

(Ⅰ)求橢圓M的方程;
(Ⅱ)求證:直線l的橫截距n為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

將圓O:x2+y2=4上各點的縱坐標變為原來的一半(橫坐標不變),得到曲線C.設O為坐標原點,直線l:x=my+
3
與C交于A、B兩點,N為線段AB的中點,延長線段ON交C于點E.若
OE
=2
ON
,則m=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點分別是F1(-c,0),F2(c,0),直線l:x=my+c與橢圓C交于兩點M,N且當m=-
3
3
時,M是橢圓C的上頂點,且△MF1F2的周長為6.
(1)求橢圓C的方程;
(2)設橢圓C的左頂點為A,直線AM,AN與直線:x=4分別相交于點P,Q,問當m變化時,以線段PQ為直徑的圓被x軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视