精英家教網 > 高中數學 > 題目詳情

【題目】函數內只取到一個最大值和一個最小值,且當時,;當時,.

(1)求函數的解析式.

(2)求函數的單調遞增區間.

(3)是否存在實數,滿足不等式?若存在,求出的范圍(或值);若不存在,請說明理由.

【答案】(1);(2).(3)存在,

【解析】

(1)由題意,得到, ,進而求得,得到,代入點,求得的值,即可得到函數的解析式;

(2)利用正弦型函數的性質,即可求得函數的單調遞增區間,得到答案;

(3)由實數滿足,求得,再由函數在上單調遞增,求得,即可得到結論.

(1)由題意,可得,,所以,

所以,所以.

由點在函數圖象上,得,

因為,所以,所以.

(2)當時,

時,函數單調遞增,

所以函數的單調遞增區間為.

(3)由題意,實數滿足,解得.

因為,所以,同理

由(2)知函數在上單調遞增,

,

只需,即成立即可,

所以存在,使成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)當 時,求函數圖象在點處的切線方程;

(2)當時,討論函數的單調性;

(3)是否存在實數,對任意,恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個不透明的袋子裝有4個完全相同的小球,球上分別標有數字為0,1,2,2,現甲從中摸出一個球后便放回,乙再從中摸出一個球,若摸出的球上數字大即獲勝(若數字相同則為平局),則在甲獲勝的條件下,乙摸1號球的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名高三學生的課外體育鍛煉平均每天運動的時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉
的時間(分鐘)

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60)

總人數

20

36

44

50

40

10

將學生日均課外課外體育運動時間在[40,60)上的學生評價為“課外體育達標”.
(1)請根據上述表格中的統計數據填寫下面2×2列聯表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?

課外體育不達標

課外體育達標

合計

20

110

合計

參考公式: ,其中n=a+b+c+d.
參考數據:

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828


(2)將上述調查所得到的頻率視為概率.現在從該校高三學生中,抽取3名學生,記被抽取的3名學生中的“課外體育達標”學生人數為X,若每次抽取的結果是相互獨立的,求X的數學期望和方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區開設分店,為了確定在該區開設分店的個數,該公司對該市已開設分店聽其他區的數據作了初步處理后得到下列表格.記表示在各區開設分店的個數, 表示這個個分店的年收入之和.

(個)

2

3

4

5

6

(百萬元)

2.5

3

4

4.5

6

(1)該公司已經過初步判斷,可用線性回歸模型擬合的關系,求關于的線性回歸方程;

(2)假設該公司在區獲得的總年利潤(單位:百萬元)與之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在區開設多少個分時,才能使區平均每個分店的年利潤最大?

(參考公式: ,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解答
(1)設函數f(x)=|x﹣ |+|x﹣a|,x∈R,若關于x的不等式f(x)≥a在R上恒成立,求實數a的最大值;
(2)已知正數x,y,z滿足x+2y+3z=1,求 + + 的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,AC為⊙O的直徑,D為 的中點,E為BC的中點.

(1)求證:DE∥AB;
(2)求證:ACBC=2ADCD.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视