【題目】已知函數,且
.
(1)判斷函數的奇偶性;
(2) 判斷函數在(1,+∞)上的單調性,并用定義證明你的結論;
(3)若,求實數a的取值范圍.
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上的函數,對m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且當x>0時,0<f(x)<1.
(1)求證f(0)=1;
(2)求證x∈R時,恒有f(x)>0;
(3)求證f(x)在R上是減函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面
為正方形,
底面
,
為棱
的中點.
(1)證明: ;
(2)求直線與平面
所成角的正弦值;
(3)若為
中點,棱
上是否存在一點
,使得
,若存在,求出
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】旅游社為某旅游團包飛機去旅游,其中旅行社的包機費為15 000元.旅游團中每人的飛機票按以下方式與旅行社結算:若旅游團人數在30人或30人以下,飛機票每張收費900元;若旅游團人數多于30人,則給予優惠,每多1人,機票費每張減少10元,但旅游團人數最多為75人.
(1)寫出飛機票的價格關于旅游團人數的函數;
(2)旅游團人數為多少時,旅行社可獲得最大利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1的對角線AC1上任取一點P,以A為球心,AP為半徑作一個球.設AP=x,記該球面與正方體表面的交線的長度和為f(x),則函數f(x)的圖象最有可能的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,“共享單車”的出現為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據行業規定,每個城市至少要投資40萬元,由前期市場調研可知:甲城市收益P與投入(單位:萬元)滿足
,乙城市收益Q與投入
(單位:萬元)滿足
,設甲城市的投入為
(單位:萬元),兩個城市的總收益為
(單位:萬元).
(1)當甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校有兩個參加國際中學生交流活動的代表名額,為此該學校高中部推薦2男1女三名候選人,初中部也推薦了1男2女三名候選人。若從6名學生中人選2人做代表。
求:(1)選出的2名同學來自不同年相級部且性別同的概率;
(2)選出的2名同學都來自高中部或都來自初中部的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的首項(a是常數),
(
).
(1)求,
,
,并判斷是否存在實數a使
成等差數列.若存在,求出
的通項公式;若不存在,說明理由;
(2)設,
(
),
為數列
的前n項和,求
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com