【題目】設命題對任意實數
,不等式
恒成立;命題
方程
表示焦點在
軸上的雙曲線.
(1)若命題為真命題,求實數
的取值范圍;
(2)若命題:“”為真命題,且“
”為假命題,求實數
的取值范圍.
【答案】(1);(2)
.
【解析】
試題分析:(1)由于雙曲線焦點在軸上,所以
,解得
;(2)不等式
恒成立,等價于判別式為非正數,解得
.若
或
真、
且
假,則這兩個命題一真一假.分別求出
假
真和
真
假時
的取值范圍,取并集得到
的取值范圍.
試題解析:
(1)因為方程表示焦點在
軸上的雙曲線.
∴,得
;∴當
時,
為真命題,………………………3分
(2)∵不等式恒成立,∴
,∴
,
∴當時,
為真命題............................6分
∵為假命題,
為真命題,∴
一真一假;.......................7分
①當真
假
,②當
假
真
無解
綜上,的取值范圍是
............................10分
科目:高中數學 來源: 題型:
【題目】已知拋物線:
的焦點為
,平行于
軸的兩條直線
,
分別交
于
,
兩點,交
的準線于
,
兩點.
(1)若在線段
上,
是
的中點,證明:
;
(2)若△的面積是△
的面積的兩倍,求
中點的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在
軸上,離心率
,且橢圓
經過點
,過橢圓
的左焦點
且不與坐標軸垂直的直線交橢圓
于
,
兩點.
(1)求橢圓的方程;
(2)設線段的垂直平分線與
軸交于點
,求△
的面積
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓與圓
相切,且與圓
相內切,記圓心
的軌跡為曲線
;設
為曲線
上的一個不在
軸上的動點,
為坐標原點,過點
作
的平行線交曲線
于
兩個不同的點.
(1)求曲線的方程;
(2)試探究和
的比值能否為一個常數?若能,求出這個常數,若不能,請說明理由;
(3)記的面積為
,
的面積為
,令
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以原點
為圓心,橢圓
的長半軸為半徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)已知點,
為動直線
與橢圓
的兩個交點,問:在
軸上是否存在點
,使
為定值?若存在,試求出點
的坐標和定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的頂點在坐標原點
,對稱軸為
軸,焦點為
,拋物線上一點
的橫坐標為2,且
.
(1)求拋物線的方程;
(2)過點作直線
交拋物線于
兩點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國男子籃球職業聯賽總決賽采用七場四勝制(即先勝四場者獲勝),進入總決賽的甲乙兩隊中,若每一場比賽甲隊獲勝的概率為,乙隊獲勝的概率為
,假設每場比賽的結果互相獨立,現已賽完兩場,乙隊以2:0暫時領先.
(1)求甲隊獲得這次比賽勝利的概率;
(2)設比賽結束時兩隊比賽的場數為隨機變量,求隨機變量
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
為
上異于原點的任意一點,過點
的直線
交
于另一點
,交
軸的正半軸于點
,且有
.當點
橫坐標為
時,
為正三角形.
(1)求的方程;
(2)若直線,且
和
有且只有一個公共點
.
①證明直線過定點,并求出定點坐標;
②的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com