【題目】如圖,四邊形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC
(1)求證:A,B,C,P四點共圓;
(2)若∠CAD= ,AB=1,求四邊形ABCP的面積.
【答案】
(1)證明:∵AC=AD,AH⊥CD,∴∠CAD=∠DAP,
從而△ACP≌△ADP,得∠ACP=∠ADP.
又AB=AD,故∠ADP=∠ABP,
從而∠ABP=∠ACP,可知A,B,C,P四點共圓;
(2)解:由AC=AD, ,從而△ACD是邊長為1的等邊三角形,
又AH⊥CD,故 .
由(1)知A,B,C,P四點共圓,又 ,故
,
從而 ,故△ABC也是邊長為1的等邊三角形,
由PC⊥BC, ,得
,
知CP,AH為等邊三角形的角平分線,從而P為△ACD的中心.
故此時SABCP=S△ABC+S△ACP= .
【解析】(1)由已知AC=AD,AH⊥CD可得△ACP≌△ADP,得∠ACP=∠ADP.再由AB=AD,得∠ADP=∠ABP,進一步得到∠ABP=∠ACP,可知A,B,C,P四點共圓;(2)由AC=AD, ,得△ACD是邊長為1的等邊三角形,結合AH⊥CD,得
.再結合A,B,C,P四點共圓,
,得
,即△ABC也是邊長為1的等邊三角形,進一步得到P為△ACD的中心.可得SABCP=S△ABC+S△ACP=
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4x+a2x+3,a∈R
(1)當a=﹣4時,且x∈[0,2],求函數f(x)的值域;
(2)若f(x)>0在(0,+∞)對任意的實數x恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x+ +lnx,a∈R.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在區間(1,4)內單調遞增,求a的取值范圍;
(3)討論函數g(x)=f′(x)﹣x的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數f(x)=lg (x≠0,x∈R)有下列命題:
①函數y=f(x)的圖象關于y軸對稱;
②在區間(﹣∞,0)上,函數y=f(x)是減函數;
③函數f(x)的最小值為lg2;
④在區間(1,+∞)上,函數f(x)是增函數.
其中正確命題序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據統計,2016年“雙十”天貓總成交金額突破1207億元.某購物網站為優化營銷策略,對11月11日當天在該網站進行網購消費且消費金額不超過1000元的1000名網購者(其中有女性800名,男性200名)進行抽樣分析.采用根據性別分層抽樣的方法從這1000名網購者中抽取100名進行分析,得到下表:(消費金額單位:元)
女性消費情況:
消費金額 | |||||
人數 | 5 | 10 | 15 | 47 |
男性消費情況:
消費金額 | |||||
人數 | 2 | 3 | 10 | 2 |
(1)計算,
的值;在抽出的100名且消費金額在
(單位:元)的網購者中隨機選出兩名發放網購紅包,求選出的兩名網購者恰好是一男一女的概率;
(2)若消費金額不低于600元的網購者為“網購達人”,低于600元的網購者為“非網購達人”,根據以上統計數據填寫列聯表,并回答能否在犯錯誤的概率不超過0.010的前提下認為“是否為‘網購達人’與性別有關?”
女性 | 男性 | 總計 | |
網購達人 | |||
非網購達人 | |||
總計 |
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函數f(x)在[﹣1,2m]上不具有單調性,求實數m的取值范圍;
(2)若f(1)=g(1).
(。┣髮崝礱的值;
(ⅱ)設 ,t2=g(x),
,當x∈(0,1)時,試比較t1 , t2 , t3的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
以坐標原點為極點,以
軸正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線
的參數方程為
(
為參數),圓
的極坐標方程為
.
(1)求直線的普通方程與圓
的直角坐標方程;
(2)設圓與直線
交于
兩點,若點
的直角坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位組織職工去某地參觀學習,需包車前往,甲車隊說:“如果領隊買一張全票,其余人可享受7折優惠!币臆囮犝f:“你們屬于團體票,按原價的7.5折優惠!边@兩個車隊的原價、車型都是一樣的,試根據單位去的人數比較兩車隊的收費哪家更優惠。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com