【題目】某校進行課題實驗,乙班為實驗班,甲班為對比班,甲乙兩班均有50人,一年后對兩班進行測試,成績如下表
甲班成績 |
| ||||
人數 | 4 | 20 | 15 | 10 | 1 |
乙班成績 | |||||
人數 | 1 | 11 | 23 | 13 | 2 |
(1)現從甲班成績位于內的試卷中抽取9份進行試卷分析,請問用什么抽樣方法更合理,并寫出最后的抽樣結果
(2)完成下列列聯表,并判斷有多大把握認為這兩個班在這次測試中成績的差異與實施課題實驗有關。
成績小于100 | 成績不小于100 | 合計 | |
甲班 | 50 | ||
乙班 | 50 | ||
合計 | 36 | 64 | 100 |
【答案】(1)分層抽樣,在,
,
三段分別抽取4份,3份,2份試卷;(2)聯表見解析,認為有
把握認為這兩個班在這次測試中成績的差異與實施課題實驗有關
【解析】
(1)由圖表可以看出甲班的3組數據的差異情況,選擇分層抽樣,然后進行計算即可;
(2)求出甲乙兩班成績小于100和比小于100的人數后,直接帶入公式進行計算,即可得到答案。
(1)由于三段成績有明顯的差異,所以用分層抽樣抽取樣本更合理,根據分層抽樣每層所占比值相等可得:在抽的試卷為:
份,在
抽的試卷為:
份,在
抽的試卷為:
份;
故在,
,
三段分別抽取4份,3份,2份試卷。
(2)根據題意可得列聯表:
成績小于100 | 成績不小于100 | 合計 | |
甲班 | 24 | 26 | 50 |
乙班 | 12 | 38 | 50 |
合計 | 36 | 64 | 100 |
則,所以有
把握認為這兩個班在這次測試中成績的差異與實施課題實驗有關。
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,直線
與
相切,求
的值;
(2)若函數在
內有且只有一個零點,求此時函數
的單調區間;
(3)當時,若函數
在
上的最大值和最小值的和為1,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】上饒市委、市政府在上饒召開上饒市全面展開新能源工程動員大會,會議動員各方力量,迅速全面展開新能源工程工作.某企業響應號召,對現有設備進行改造,為了分析設備改造前后的效果,現從設備改造前后生產的大量產品中各抽取了200件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.圖1是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數分布表.
(1)完成列聯表,并判斷是否有
的把握認為該企業生產的這種產品的質量指標值與設備改造有關;
設備改造前 | 設備改造后 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(2)根據圖1和表1提供的數據,試從產品合格率的角度對改造前后設備的優劣進行比較;
(3)根據市場調查,設備改造后,每生產一件合格品企業可獲利200元,一件不合格品虧損150元,用頻率估計概率,則生產1000件產品企業大約能獲利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司擬設計一個扇環形狀的花壇(如圖所示),該扇環是由以點為圓心的兩個同心圓弧和延長后通過點
,
的兩條線段圍成.設圓弧
和圓弧
所在圓的半徑分別為
米,圓心角為θ(弧度).
(1)若,
,求花壇的面積;
(2)設計時需要考慮花壇邊緣(實線部分)的裝飾問題,已知直線部分的裝飾費用為60元/米,弧線部分的裝飾費用為90元/米,預算費用總計1200元,問線段AD的長度為多少時,花壇的面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.
(1)完成列聯表,并回答能否有
的把握認為“對冰球是否有興趣與性別有關”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)若將頻率視為概率,現再從該校一年級全體學生中,采用隨機抽樣的方法每次抽取1名學生,抽取5次,記被抽取的5名學生中對冰球有興趣的人數為,若每次抽取的結果是相互獨立的,求
的分布列,期望和方差.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 (n∈N*)的展開式中第五項的系數的與第三項的系數的比是10∶1.
(1)求展開式中各項系數的和;
(2)求展開式中含的項;
(3)求展開式中系數最大的項和二項式系數最大的項.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來空氣質量逐步惡化,霧霾天氣現象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關,在市第一人民醫院隨機對入院50人進行了問卷調查,得到了如表的列聯表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 5 | ||
女 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.
參考格式:,其中
.
下面的臨界值僅供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)請將上面的列聯表補充完整;
(2)是否有99%的把握認為患心肺疾病與性別有關?說明你的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com