【題目】在△ABC中,A、B、C所對的邊分別是a、b、c,且有bcosC+ccosB=2acosB.
(1)求B的大;
(2)若△ABC的面積是,且a+c=5,求b.
【答案】(1);(2)
.
【解析】
(1)由題意結合正弦定理首先求得cosB的值,然后求解∠B的大小即可;
(2)由題意結合面積公式和余弦定理得到方程組,據此求得b的值即可.
(1)由bcosC+ccosB=2acosB,及正弦定理得:sinBcosC+sinCcosB=2sinAcosB,
即sin(B+C)=2sinAcosB,
又A+B+C=π,所以sin(B+C)=sinA,
從而sinA=2sinAcosB,又0<A<π.
故cosB=,又0<B<π,所以B=
.
(2)又S=acsin
=
,
所以ac=3,又a+c=5,
從而b2=a2+c2-2accosB=(a+c)2-3ac=25-9=16,故b=4.
科目:高中數學 來源: 題型:
【題目】如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點.
(1)證明:MN∥平面C1DE;
(2)求點C到平面C1DE的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在矩形ABCD和矩形ABEF中,,
,矩形ABEF可沿AB任意翻折.
(1)求證:當點F,A,D不共線時,線段MN總平行于平面ADF.
(2)“不管怎樣翻折矩形ABEF,線段MN總與線段FD平行”這個結論正確嗎?如果正確,請證明;如果不正確,請說明能否改變個別已知條件使上述結論成立,并給出理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐S-ABC中,∠ABC=90°,D是AC的中點,且SA=SB=SC.
(1)求證:SD⊥平面ABC;
(2)若AB=BC,求證:BD⊥平面SAC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(13分)設{an}是公比為正數的等比數列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設{bn}是首項為1,公差為2的等差數列,求數列{an+bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正四面體的各棱長均為2,
、
、
分別為棱
、
、
的中點,以
為圓心、1為半徑,分別在面
、面
內作弧
,并將兩弧各分成五等份,分點順次為
、
、
、
、
、
以及
、
、
、
、
、
.一只甲蟲欲從點
出發,沿四面體表面爬行至點
,則其爬行的最短距離為___________。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給圖中A,B,C,D,E,F六個區域進行染色,每個區域只染一種顏色,且相鄰的區域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com