精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線 ,曲線 為參數),以坐標原點為極點, 軸正半軸為極軸,建立極坐標系.

(Ⅰ)求曲線, 的極坐標方程;

(Ⅱ)曲線 為參數, )分別交, , 兩點,當取何值時, 取得最大值.

【答案】(Ⅰ):, : ;(Ⅱ).

【解析】試題分析:(1)利用 ,將直線直角坐標方程化為極坐標方程,先根據 將曲線參數方程化為直角坐標方程,,再利用將曲線直角坐標方程化為極坐標方程.(2)先確定曲線的極坐標方程為, ),再代入曲線 的極坐標方程得,從而理二倍角公式及配角公式化簡,最后根據正弦函數性質求最值.

試題解析:(Ⅰ)因為, , ,

的極坐標方程為

的普通方程為,即,對應極坐標方程為.

(Ⅱ)曲線的極坐標方程為

, ,則 ,

所以

,

, ,

所以當,即時, 取得最大值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】有甲、乙兩種商品,經營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關系有經驗公式:P=,Q= .今有3萬元資金投入經營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應為多少?能獲得的最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一座圓拱橋,當水面在如圖所示位置時,拱頂離水面2米,水面寬12米,當水面下降1米后,水面寬多少米?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】空氣質量按照空氣質量指數大小分為七檔(五級),相對應空氣質量的七個類別,指數越大,說明污染的情況越嚴重,對人體危害越大.

指數

級別

類別

戶外活動建議

可正;顒

輕微污染

易感人群癥狀有輕度加劇,健康人群出現刺激癥狀,心臟病和呼吸系統疾病患者應減少體積消耗和戶外活動.

輕度污染

中度污染

心臟病和肺病患者癥狀顯著加劇,運動耐受力降低,健康人群中普遍出現癥狀,老年人和心臟病、肺病患者應減少體力活動.

中度重污染

重污染

健康人運動耐受力降低,由明顯強烈癥狀,提前出現某些疾病,老年人和病人應當留在室內,避免體力消耗,一般人群應盡量減少戶外活動.

現統計邵陽市市區2016年1月至11月連續60天的空氣質量指數,制成如圖所示的頻率分布直方圖.

(1)求這60天中屬輕度污染的天數;

(2)求這60天空氣質量指數的平均值;

(3)一般地,當空氣質量為輕度污染或輕度污染以上時才會出現霧霾天氣,且此時出現霧霾天氣的概率為,請根據統計數據,求在未來2天里,邵陽市恰有1天出現霧霾天氣的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數),

(1)求函數單調區間;

(2)當時,

①求函數上的值域;

②求證:,其中.(參考數據

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知以點C為圓心的圓經過點A(1,0)B(3,4),且圓心在直線x3y150上.設點P在圓C上,求PAB的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x|(x﹣a),a為實數.

(1)若函數f(x)為奇函數,求實數a的值;

(2)若函數f(x)在[0,2]為增函數,求實數a的取值范圍;

(3)是否存在實數a(a<0),使得f(x)在閉區間上的最大值為2,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料

12月1日

12月2日

12月3日

12月4日

12月5日

溫差(°C)

10

11

13

12

8

發芽數(顆)

23

25

30

26

16

農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗

1)求選取的2組數據恰好是不相鄰2天數據的概率;

(2)若選取的是12月1日12月5日的兩組數據,請根據12月2日12月4日的數據,求出y關于x的線性回歸方程

(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

注:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合M{x|xm,mZ},N{x|xnZ},P{x|xpZ},試確定MN,P之間的關系.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视