【題目】學校為了解學生的數學學習情況,在全校高一年級學生中進行了抽樣調查,調查結果如表所示:
喜歡數學 | 不喜歡數學 | 合計 | |
男生 | 60 | 20 | 80 |
女生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
(1)根據表中數據,問是否有95%的把握認為“男生和女生在喜歡數學方面有差異”;
(2)在被調查的女生中抽出5名,其中2名喜歡數學,現在從這5名學生中隨機抽取3人,求至多有1人喜歡數學的概率.
附:參考公式:K2= ,其中n=a+b+c+d
P(K2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
【答案】
(1)解:將2×2列聯表中的數據代入公式計算,得
K2= =
=
≈4.762.
由于4.762>3.841,所以有95%的把握認為“男生和女生在喜歡數學方面有差異”
(2)解:從5名女生中任取3人的一切可能結果所組成的基本事件空間:
Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),
(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)},
其中ai表示喜歡數學的學生,i=1,2,bj表示不喜歡數學的學生,j=1,2,3.
Ω由10個基本事件組成,且這些基本事件的出現是等可能的.
用A表示“3人中至多有1人喜歡數學”這一事件,
則A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),
(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.
事件A由7個基本事件組成,因而P(A)=
【解析】(1)將2×2列聯表中的數據代入公式計算即可;(2)分別求出所有的基本事件以及滿足條件的基本事件,從而求出滿足條件的事件的概率即可.
科目:高中數學 來源: 題型:
【題目】若以曲線上任意一點
為切點作切線
,曲線上總存在異于
的點
,以點
為切點作切線
,且
,則稱曲線
具有“可平行性”,現有下列命題:
①函數的圖象具有“可平行性”;
②定義在的奇函數
的圖象都具有“可平行性”;
③三次函數具有“可平行性”,且對應的兩切點
,
的橫坐標滿足
;
④要使得分段函數的圖象具有“可平行性”,當且僅當
.
其中的真命題個數有()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B是x軸上的兩點,點P的橫坐標為2,且|PA|=|PB|,若直線PA的方程為x-y+1=0,則直線PB的方程是( ).
A.x+y-5=0
B.2x-y-1=0
C.2y-x-4=0
D.2x+y-7=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列判斷錯誤的是( )
A.“am2<bm2”是“a<b”的充分不必要條件
B.命題“x∈R,x3﹣x2≤0”的否定是“x∈R,x3﹣x2﹣1>0”
C.“若a=1,則直線x+y=0和直線x﹣ay=0互相垂直”的逆否命題為真命題
D.若p∧q為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數方程為 (t為參數),在以直角坐標系的原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ=
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點,求△AOB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點P是CD上的動點,則直線B1P與直線BC1所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】要制作一個如圖的框架(單位:米).要求所圍成的總面積為19.5(),其中
是一個矩形,
是一個等腰梯形,梯形高
,
,設
米,
米.
(1)求關于
的表達式;
(2)如何設計,
的長度,才能使所用材料最少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產情況,隨機在這兩條流水線上各抽取40件產品作為樣本,并稱出它們的重量(單位:克),重量值落在內的產品為合格品,否則為不合格品,統計結果如表:
(Ⅰ)求甲流水線樣本合格的頻率;
(Ⅱ)從乙流水線上重量值落在內的產品中任取2個產品,求這2件產品中恰好只有一件合格的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com