精英家教網 > 高中數學 > 題目詳情

已知函數
(I)求的單調區間;
(II)設,若上單調遞增,求的取值范圍.

(I)時,的單調遞增區間是時,的單調遞增區間是的單調遞減區間是;(II)

解析試題分析:(I)先求出定義域,為再求導:,然后分討論;(II)先由已知得依題意:恒成立,轉化為
試題解析:(I)定義域為單調遞增區間是的單調遞增區間是的單調遞減區間是時,的單調遞增區間是時,的單調遞增區間是的單調遞減區間是            6分
(II)依題意:恒成立,                                  13分
考點:1.函數導數與函數的單調性;2.利用導數解決恒成立問題中的參數取值范圍問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=alnx+(a≠0)在(0,)內有極值.
(I)求實數a的取值范圍;
(II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]時,求證:f(x2)﹣f(x1)≥ln2+

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的單調區間;
(2)當函數自變量的取值區間與對應函數值的取值區間相同時,這樣的區間稱為函數的保值區間.,試問函數上是否存在保值區間?若存在,請求出一個保值區間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,函數
(1)當時,寫出函數的單調遞增區間;
(2)當時,求函數在區間[1,2]上的最小值;
(3)設,函數在(m,n)上既有最大值又有最小值,請分別求出m,n的取值范圍(用a表示).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數在點處的切線方程為
(1)求的值;
(2)對函數定義域內的任一個實數,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數。
(Ⅰ)若,求函數的單調區間并比較的大小關系
(Ⅱ)若函數的圖象在點處的切線的傾斜角為,對于任意的,函數在區間上總不是單調函數,求的取值范圍;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

.
(Ⅰ)若對一切恒成立,求的取值范圍;
(Ⅱ)設,且是曲線上任意兩點,若對任意的,直線AB的斜率恒大于常數,求的取值范圍;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)若函數在區間上是減函數,求實數的最小值;
(Ⅲ)若存在是自然對數的底數)使,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,
(Ⅰ)求函數的單調區間;
(Ⅱ)求函數在區間上的最值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视