【題目】用五種不同顏色給三棱臺的六個頂點染色,要求每個點染一種顏色,且每條棱的兩個端點染不同顏色.則不同的染色方法有___________種.
【答案】1920.
【解析】
分析:分兩步來進行,先涂,再涂
,然后分若5種顏色都用上、若5種顏色只用4種、若5種顏色只用3種這三種情況,分別求得結果,再相加,即可得結果.
詳解:分兩步來進行,先涂,再涂
.
第一類:若5種顏色都用上,先涂,方法有
種,再涂
中的兩個點,方法有
種,最后剩余的一個點只有2種涂法,故此時方法共有
種;
第二類:若5種顏色只用4種,首先選出4種顏色,方法有種;
先涂,方法有
種,再涂
中的一個點,方法有3種,最后剩余的兩個點只有3種涂法,故此時方法共有
種;
第三類:若5種顏色只用3種,首先選出3種顏色,方法有種;
先涂,方法有
種,再涂
,方法有2種,故此時方法共有
種;
綜上可得,不同涂色方案共有種,
故答案是1920.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,且橢圓
過點
.過點
做兩條相互垂直的直線
、
分別與橢圓
交于
、
、
、
四點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若,
,探究:直線
是否過定點?若是,請求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】朱世杰是歷史上最偉大的數學家之一,他所著的《四元玉鑒》卷中“如像招數”五問中有如下問題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉多七人.”其大意為“官府陸續派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數比前一天多7人.”在該問題中的1864人全部派遣到位需要的天數為( )
A. 9B. 16C. 18D. 20
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自2017年2月底,90多所自主招生試點高校將陸續出臺2017年自主招生簡章,某校高三年級選取了在期中考試中成績優異的100名學生作為調查對象,對是否準備參加2017年的自主招生考試進行了問卷調查,其中“準備參加”“不準備參加”和“待定”的人數如表:
準備參加 | 不準備參加 | 待定 | |
男生 | 30 | 6 | 15 |
女生 | 15 | 9 | 25 |
(1)在所有參加調查的同學中,在三種類型中用分層抽樣的方法抽取20人進行座談交流,則在“準備參加”“不準備參加”和“待定”的同學中應各抽取多少人?
(2)在“準備參加”的同學中用分層抽樣方法抽取6人,從這6人中任意抽取2人,求至少有一名女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓,拋物線
的頂點為
,準線的方程為
,
為拋物線
上的動點,過點
作圓
的兩條切線與
軸交于
.
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求△
面積
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,△ABC為正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中點.求證:
(1)DE=DA;
(2)平面BDM⊥平面ECA;
(3)平面DEA⊥平面ECA.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一半徑為2米的水輪如圖所示,水輪圓心距離水面1米;已知水輪按逆時針做勻速轉動,每3秒轉一圈,如果當水輪上點
從水中浮現時(圖中點
)開始計算時間.
(1)試將點距離水面的高度
(單位:米)表示為時間
(單位:秒)的函數
;
(2)點第一次到達最高點大約要多長時間?
(3)求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某旅游區每年各個月份接待游客的人數近似地滿足周期性規律,因而第個月從事旅游服務工作的人數
可近似地用函數
來刻畫,其中正整數
表示月份且
,例如
表示1月份,
和
是正整數,
,
. 統計發現,該地區每年各個月份從事旅游服務工作的人數有以下規律:
① 每年相同的月份,該地區從事旅游服務工作的人數基本相同;
② 該地區從事旅游服務工作的人數最多的8月份和最少的2月份相差400人;
③ 2月份該地區從事旅游服務工作的人數為100人,隨后逐月遞增直到8月份達到最多.
(1)試根據已知信息,求的表達式;
(2)一般地,當該地區從事旅游服務工作的人數在400或400以上時,該地區也進入了一年中的旅游“旺季”,那么,一年中的哪幾個月是該地區的旅游“旺季”?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com