精英家教網 > 高中數學 > 題目詳情

給出以下命題
(1)數學公式時,函數數學公式的最小值為數學公式;
(2)若f(x)是奇函數,則f(x-1)的圖象關于A(1,0)對稱;
(3)“數列{an}為等比數列”是“數列{anan+1}為等比數列的充分不必要條件;
(4)若函數f(x)=log3(-x2+2mx-m2+36)在區間[-3,2)上是減函數,則m≤-3;
其中正確命題的序號是________.

解:(1)∵,∴0<x<1,∴函數取不到最小值,故(1)錯誤;
(2)∵f(x)是奇函數,∴f(x)的圖象關于(0,0)對稱,∵f(x-1)的圖象是由f(x)的圖象向右平移一個單位,f(x-1)的圖象關于A(1,0)對稱,故(2)正確;
(3)若數列{an}為等比數列,公比為q,則,∴,∴數列{anan+1}為等比數列
若數列{anan+1}為等比數列,則,∴數列{an}不一定為等比數列,∴“數列{an}為等比數列”是“數列{anan+1}為等比數列的充分不必要條件,故(3)正確;
(4)若函數f(x)=log3(-x2+2mx-m2+36)在區間[-3,2)上是減函數,則函數g(x)=-x2+2mx-m2+36在區間[-3,2)上是減函數,且g(x)>0,∴,∴-4<m≤-3,故(4)錯誤;
故答案為:(2)(3)
分析:(1)根據,可得0<x<1,求函數的最小值,不能用基本不等式;(2)根據f(x)是奇函數,可得f(x)的圖象關于(0,0)對稱,由于f(x-1)的圖象是由f(x)的圖象向右平移一個單位,f(x-1)的圖象關于A(1,0)對稱;(3)若數列{an}為等比數列,公比為q,則,,從而可得數列{anan+1}為等比數列;若數列{anan+1}為等比數列,則,故數列{an}不一定為等比數列;(4)若函數f(x)=log3(-x2+2mx-m2+36)在區間[-3,2)上是減函數,則函數g(x)=-x2+2mx-m2+36在區間[-3,2)上是減函數,且g(x)>0,故-4<m≤-3,從而可得結論.
點評:本題的考點是命題的真假判斷與應用,考查函數的最值,考查函數圖象的對稱性,考查等比數列,考查函數的單調性,知識點多,需一一判斷.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)是定義在R上的奇函數,當x>0時,f(x)=e-x(x-1),給出以下命題:
①當x<0時,f(x)=ex(x+1);        
②函數f(x)有五個零點;
③若關于x的方程f(x)=m有解,則實數m的取值范圍是f(-2)≤m≤f(2);
④對?x1,x2∈R,|f(x2)-f(x1)|<2恒成立.
其中,正確命題的序號是
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

給出以下命題
(1)x∈(0,
π
2
)
時,函數y=sinx+
2
sinx
的最小值為2
2

(2)若f(x)是奇函數,則f(x-1)的圖象關于A(1,0)對稱;
(3)“數列{an}為等比數列”是“數列{anan+1}為等比數列的充分不必要條件;
(4)若函數f(x)=log3(-x2+2mx-m2+36)在區間[-3,2)上是減函數,則m≤-3;
其中正確命題的序號是
(2)(3)
(2)(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•福建模擬)對于非空實數集A,記A*={y|?x∈A,y≥x}.設非空實數集合M⊆P,若m>1時,則m∉P. 現給出以下命題:
①對于任意給定符合題設條件的集合M、P,必有P*⊆M*;
②對于任意給定符合題設條件的集合M、P,必有M*∩P≠∅;
③對于任意給定符合題設條件的集合M、P,必有M∩P*=∅;
④對于任意給定符合題設條件的集合M、P,必存在常數a,使得對任意的b∈M*,恒有a+b∈P*;
其中正確的命題是
①④
①④
(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

給出以下命題
(1)x∈(0,
π
2
)
時,函數y=sinx+
2
sinx
的最小值為2
2

(2)若f(x)是奇函數,則f(x-1)的圖象關于A(1,0)對稱;
(3)“數列{an}為等比數列”是“數列{anan+1}為等比數列的充分不必要條件;
(4)若函數f(x)=log3(-x2+2mx-m2+36)在區間[-3,2)上是減函數,則m≤-3;
其中正確命題的序號是______.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视