【題目】下圖是某地區2000年至2016年環境基礎設施投資額(單位:億元)的折線圖.
為了預測該地區2018年的環境基礎設施投資額,建立了與時間變量
的兩個線性回歸模型.根據2000年至2016年的數據(時間變量
的值依次為
)建立模型①:
;根據2010年至2016年的數據(時間變量
的值依次為
)建立模型②:
.
(1)分別利用這兩個模型,求該地區2018年的環境基礎設施投資額的預測值;
(2)你認為用哪個模型得到的預測值更可靠?并說明理由.
【答案】(1)利用模型①預測值為226.1,利用模型②預測值為256.5,(2)利用模型②得到的預測值更可靠.
【解析】分析:(1)兩個回歸直線方程中無參數,所以分別求自變量為2018時所對應的函數值,就得結果,(2)根據折線圖知2000到2009,與2010到2016是兩個有明顯區別的直線,且2010到2016的增幅明顯高于2000到2009,也高于模型1的增幅,因此所以用模型2更能較好得到2018的預測.
詳解:(1)利用模型①,該地區2018年的環境基礎設施投資額的預測值為
=–30.4+13.5×19=226.1(億元).
利用模型②,該地區2018年的環境基礎設施投資額的預測值為
=99+17.5×9=256.5(億元).
(2)利用模型②得到的預測值更可靠.
理由如下:
(i)從折線圖可以看出,2000年至2016年的數據對應的點沒有隨機散布在直線y=–30.4+13.5t上下,這說明利用2000年至2016年的數據建立的線性模型①不能很好地描述環境基礎設施投資額的變化趨勢.2010年相對2009年的環境基礎設施投資額有明顯增加,2010年至2016年的數據對應的點位于一條直線的附近,這說明從2010年開始環境基礎設施投資額的變化規律呈線性增長趨勢,利用2010年至2016年的數據建立的線性模型=99+17.5t可以較好地描述2010年以后的環境基礎設施投資額的變化趨勢,因此利用模型②得到的預測值更可靠.
(ii)從計算結果看,相對于2016年的環境基礎設施投資額220億元,由模型①得到的預測值226.1億元的增幅明顯偏低,而利用模型②得到的預測值的增幅比較合理,說明利用模型②得到的預測值更可靠.
以上給出了2種理由,考生答出其中任意一種或其他合理理由均可得分.
科目:高中數學 來源: 題型:
【題目】若一條直線與一個平面垂直,則稱此直線與平面構成一個“正交線面對”.那么在一個正方體中,由兩個頂點確定的直線與含有四個頂點的平面構成的“正交線面對”的個數是( )
A. 48 B. 36 C. 24 D. 18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐(如圖1)的平面展開圖(如圖2)中,四邊形
為邊長等于
的正方形,
和
均為正三角形,在三棱錐
中:
(1)證明:平面平面
;
(2)若點在棱
上運動,當直線
與平面
所成的角最大時,求二面角
的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點.
(1)證明:MN∥平面C1DE;
(2)求AM與平面A1MD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點的直線
的參數方程是
(
為參數),以平面直角坐標系的原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)若直線與曲線
交于
兩點,試問是否存在實數
,使得
?若存在,求出實數
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代有著輝煌的數學研究成果,其中的《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,有豐富多彩的內容,是了解我國古代數學的重要文獻,這5部專著中有3部產生于漢、魏、晉、南北朝時期,某中學擬從這5部專著中選擇2部作為“數學文化”校本課程學習內容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學在高二下學期開設四門數學選修課,分別為《數學史選講》.《球面上的幾何》.《對稱與群》.《矩陣與變換》.現有甲.乙.丙.丁四位同學從這四門選修課程中選修一門,且這四位同學選修的課程互不相同,下面關于他們選課的一些信息:①甲同學和丙同學均不選《球面上的幾何》,也不選《對稱與群》:②乙同學不選《對稱與群》,也不選《數學史選講》:③如果甲同學不選《數學史選講》,那么丁同學就不選《對稱與群》.若這些信息都是正確的,則丙同學選修的課程是( 。
A. 《數學史選講》B. 《球面上的幾何》C. 《對稱與群》D. 《矩陣與變換》
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠家為了了解某新產品使用者的年齡情況,現隨機調査100 位使用者的年齡整理后畫出的頻率分布直方圖如圖所示.
(1)求100名使用者中各年齡組的人數,并利用所給的頻率分布直方圖估計所有使用者的平均年齡;
(2)若已從年齡在的使用者中利用分層抽樣選取了6人,再從這6人中選出2人,求這2人在不同的年齡組的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com