【題目】如圖,在矩形中,
,
為
中點,沿直線
將
翻折成
,使平面
平面
.點
分別在線段
上,若沿直線
將四邊形
向上翻折,使
與
重合,則
__________,四棱錐
的體積為__________.
【答案】2
【解析】
過作
,垂足為
,連
,則
,因為平面
平面
,取
的中點
,連
,因為
,則
,所以
平面
,所以
,所以
三點共線,在三角形
中,求出
,在
中,求出
,在△
中,
,根據余弦定理求出
,在直角△
中,求出
,
,過
作
,垂足為
,在直角△
中,求出
,則
,從而可得四邊形
的面積為
,最后由四棱錐的體積公式可得體積.
如圖:過作
,垂足為
,連
,則
,
因為平面平面
,取
的中點
,連
,因為
,則
,
所以平面
,所以
,所以
三點共線,
在三角形中,
,所以
,所以
,
在中,
,所以
,
在△中,
,
設,則
,
在△中
,
所以,解得
,即
,
設,則
,
在直角△中,
,即
,解得
,
即,
在直角△中,
,
所以,
過作
,垂足為
,則
,
在直角△中,
,所以
,所以
,所以
,
所以四邊形的面積為
,
所以四棱錐的體積為
,
故答案為:(1)2 (2)
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的離心率
,以上頂點和右焦點為直徑端點的圓與直線
相切.
(1)求橢圓的標準方程.
(2)是否存在斜率為2的直線,使得當直線與橢圓有兩個不同的交點
,
時,能在直線
上找到一點
,在橢圓
上找到一點
,滿足
?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的左頂點
,且點
在橢圓上,
分別是橢圓的左、右焦點。過點
作斜率為
的直線交橢圓
于另一點
,直線
交橢圓
于點
.
(1)求橢圓的標準方程;
(2)若為等腰三角形,求點
的坐標;
(3)若,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在矩形中,
,
,
為
的中點,
為
中點.將
沿
折起到
,使得平面
平面
(如圖2).
(1)求證:;
(2)求直線與平面
所成角的正弦值;
(3)在線段上是否存在點
,使得
平面
? 若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一幅標準的三角板如圖1中,為直角,
,
為直角,
,且
,把
與
拼齊使兩塊三角板不共面,連結
如圖2.
(1)若是
的中點,
是
的中點,求證:
平面
;
(2)在《九章算術》中,稱四個面都是直角三角形的三棱錐為“鱉臑”,若圖2中,三棱錐
的體積為2,則圖2是否為鱉臑?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某客戶準備在家中安裝一套凈水系統,該系統為三級過濾,使用壽命為十年.如圖所示,兩個一級過濾器采用并聯安裝,二級過濾器與三級過濾器為串聯安裝。
其中每一級過濾都由核心部件濾芯來實現。在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立),三級濾芯無需更換,若客戶在安裝凈水系統的同時購買濾芯,則一級濾芯每個元,二級濾芯每個
元.若客戶在使用過程中單獨購買濾芯,則一級濾芯每個
元,二級濾芯每個
元,F需決策安裝凈水系統的同時購濾芯的數量,為此參考了根據
套該款凈水系統在十年使用期內更換濾芯的相關數據制成的圖表,其中圖是根據
個一級過濾器更換的濾芯個數制成的柱狀圖,表是根據
個二級過濾器更換的濾芯個數制成的頻數分布表.
二級濾芯更換頻數分布表
二級濾芯更換的個數 | ||
頻數 |
以個一級過濾器更換濾芯的頻率代替
個一級過濾器更換濾芯發生的概率,以
個二級過濾器更換濾芯的頻率代替
個二級過濾器更換濾芯發生的概率.
(1)求一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為的概率;
(2)記表示該客戶的凈水系統在使用期內需要更換的一級濾芯總數,求
的分布列及數學期望;
(3)記,
分別表示該客戶在安裝凈水系統的同時購買的一級濾芯和二級濾芯的個數.若
,且
,以該客戶的凈水系統在使用期內購買各級濾芯所需總費用的期望值為決策依據,試確定
,
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年12月16日,公安部聯合阿里巴巴推出的“錢盾反詐機器人”正式上線,當普通民眾接到電信網絡詐騙電話,公安部錢盾反詐預警系統預警到這一信息后,錢盾反詐機器人即自動撥打潛在受害人的電話予以提醒,來電信息顯示為“公安反詐專號”.某法制自媒體通過自媒體調查民眾對這一信息的了解程度,從5000多參與調查者中隨機抽取200個樣本進行統計,得到如下數據:男性不了解這一信息的有50人,了解這一信息的有80人,女性了解這一信息的有40人.
(1)完成下列列聯表,問:能否在犯錯誤的概率不超過0.01的前提下,認為200個參與調查者是否了解這一信息與性別有關?
了解 | 不了解 | 合計 | |
男性 | |||
女性 | |||
合計 |
(2)該自媒體對200個樣本中了解這一信息的調查者按照性別分組,用分層抽樣的方法抽取6人,再從這6人中隨機抽取3人給予一等獎,另外3人給予二等獎,求一等獎與二等獎獲得者都有女性的概率.
附:
P(K2≥k) | 0.01 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義域為R的周期函數,最小正周期為2,且
f(1+x)=f(1-x),當-1≤x≤0時,f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數f(x)在區間[-1,2]上的表達式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com