精英家教網 > 高中數學 > 題目詳情

哈爾濱市五一期間決定在省婦女兒中心舉行中學生“藍天綠樹、愛護環境”圍棋比賽,規定如下:
兩名選手比賽時每局勝者得1分,負者得0分,比賽進行到有一人比對方多3分或打滿7局時停止.
設某學校選手甲和選手乙比賽時,甲在每局中獲勝的概率為,且各局勝負相互獨立.已知
第三局比賽結束時比賽停止的概率為
(1)求的值;
(2)求甲贏得比賽的概率;
(3)設表示比賽停止時已比賽的局數,求隨機變量的分布列和數學期望.

(1);(2);
(3)


3
5
7




期望為

解析試題分析:(1)根據題意,由于某學校選手甲和選手乙比賽時,甲在每局中獲勝的概率為,且各局勝負相互獨立.已知
第三局比賽結束時比賽停止的概率為,而要是停止的前提是比賽進行到有一人比對方多3分停止,且兩名選手比賽時每局勝者得1分,負者得0分,那么可知解得;
(2)那么對于甲贏得比賽,需要分為兩種情況,連勝三局,或者比賽7局,前6局勝出兩局,最后一局甲贏,那么可知其概率值為;
(3)那么結合題意,表示比賽停止時已比賽的局數,可知x的可能取值為3,5,7分別得分為3:0,4:1,5:2,其概率值為,,


3
5
7




期望
考點:分布列
點評:主要是考查了分布列的運用,以及古典概型的概率的運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在一個盒子中,放有大小相同的紅、白、黃三個小球,現從中任意摸出一球,若是紅球記1分,白球記2分,黃球記3分.現從這個盒子中有放回地先后摸出兩球,所得分數分別記為、,設為坐標原點,點的坐標為,記
(1)求隨機變量=5的概率;
(2)求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在1,2,3,…,9這9個自然數中,任取3個數,
(1)記Y表示“任取的3個數中偶數的個數”,求隨機變量Y的分布列及其期望;
(2)記X為3個數中兩數相鄰的組數,例如取出的數為1,2,3,則有這兩組相鄰的數1,2和2,3,此時X的值為2,求隨機變量X的分布列及其數學期望E(X).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某射手擊中目標的概率為0.8,每次射擊的結果相互獨立,現射擊10次,問他最有可能射中幾次?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

)袋中裝有大小相同的黑球、白球和紅球共10個。已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是
(1)求袋中各色球的個數;
(2)從袋中任意摸出3個球,記得到白球的個數為ξ,求隨機變量ξ的分布列及數學期望Eξ和方差Dξ;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

中央電視臺星光大道某期節目中,有5位實力均等的選手參加比賽,經過四輪比賽決出周冠軍(每一輪比賽淘汰l位選手).
(1)求甲、乙兩位選手都進入第三輪比賽的概率;
(2)求甲選手在第三輪被淘汰的的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙、丙三人獨立參加某企業的招聘考試,根據三人的專業知識、應試表現、工作經驗等綜合因素,三人被招聘的概率依次為表示被招聘的人數。
(1)求三人中至少有一人被招聘的概率;
(2)求隨機變量的分布列和數學期望。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

哈爾濱市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為。

 
優秀
非優秀
合計
甲班
10
 
 
乙班
 
30
 
    合計
 
 
110
(1)請完成上面的列聯表;
(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優秀的學生中抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

從編號為1,2,3,4,5的五個形狀大小相同的球中,任取2個球,求:(1)取到的這2個球編號之和為5的概率;(2)取到的這2個球編號之和為奇數的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视