(本小題滿分l2分)
已知函數
(1)若,求函數
的極小值;
(2)設函數,試問:在定義域內是否存在三個不同的自變量
使得
的值相等,若存在,請求出
的范圍,若不存在,請說明理由?
(1)極小值 (2)不存在
【解析】
試題分析:(I)由已知得,
則當時
,可得函數
在
上是減函數,
當時
,可得函數
在
上是增函數,
故函數的極小值為;
(Ⅱ)若存在,設,則對于某一實數
,方程
在
上有三個不同的實數根,設
,
則有兩個不同的零點,即關于
的方程
有兩個不同的解
,
則,
設,則
,故
在
上單調遞增,
則當時
,即
,
又,則
故
在
上是增函數,
則至多只有一個解,故不存。
方法二:關于方程的解,
當時,由方法一知
,此時方程無解;
當時,可以證明
是增函數,此方程最多有一個解,故不存在。
考點:利用導數研究函數的單調性;極值;函數的零點.
點評:本題考查函數的單調區間的求法,考查滿足條件的實數的取值范圍的求法.綜合性強,難度大,具有一定的探索性.解題時要認真審題,仔細解答,注意合理地進行等價轉化.
科目:高中數學 來源:2011-2012學年山東省高三下學期模擬沖刺考試理科數學試卷(解析版) 題型:解答題
(本小題滿分l2分)已知數列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).數列{bn}的前n項和為Sn,其中b1=-,bn+1=-
Sn(n∈N*).
(1)求數列{an}和{bn}的通項公式;
(2)若Tn=+
+…+
,求Tn的表達式
查看答案和解析>>
科目:高中數學 來源:2011-2012學年山東省高三下學期模擬沖刺考試理科數學試卷(解析版) 題型:解答題
(本小題滿分l2分)已知橢圓的的右頂點為A,離心率,過左焦點
作直線
與橢圓交于點P,Q,直線AP,AQ分別與直線
交于點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段為直徑的圓經過焦點
.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年貴州省高三年級第五次月考文科數學 題型:解答題
(本小題滿分l2分)(注意:在試題卷上作答無效)
求經過A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上的圓的方程
(I)求出圓的標準方程
(II)求出(I)中的圓與直線3x+4y=0相交的弦長AB
查看答案和解析>>
科目:高中數學 來源:2010-2011學年廣東省高三上學期10月月考理科數學卷 題型:解答題
(本小題滿分l2分)設命題:函數
(
)的值域是
;命題
:指數函數
在
上是減函數.若命題“
或
”是假命題,求實數
的范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com