【題目】已知橢圓,
為橢圓的左、右焦點,點
在直線
上且不在
軸上,直線
與橢圓的交點分別為
和
,
為坐標原點.
設直線
的斜率為
,證明:
問直線
上是否存在點
,使得直線
的斜率
滿足
?若存在,求出所有滿足條件的點
的坐標;若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】已知a,b是異面直線,給出下列結論:
①一定存在平面,使直線
平面
,直線
平面
;
②一定存在平面,使直線
平面
,直線
平面
;
③一定存在無數個平面,使直線b與平面
交于一個定點,且直線
平面
.
則所有正確結論的序號為( )
A.②③B.①③C.①②D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
與
都為等邊三角形,且側面
與底面
互相垂直,
為
的中點,點
在線段
上,且
,
為棱
上一點.
(1)試確定點的位置,使得
平面
;
(2)在(1)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是由非負整數組成的無窮數列,該數列前n項的最大值記為
,第n項之后的各項
的最小值記為
,設
.
(1)若為
,是一個周期為4的數列,寫出
的值;
(2)設d為非負整數,證明:)的充要條件是
是公差為d的等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種“籠具”由內,外兩層組成,無下底面,內層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為,高為
,圓錐的母線長為
.
(1)求這種“籠具”的體積(結果精確到0.1);
(2)現要使用一種紗網材料制作50個“籠具”,該材料的造價為每平方米8元,共需多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為F,F關于原點的對稱點為P,過F作
軸的垂線交拋物線于M,N兩點,給出下列三個結論:
①必為直角三角形;
②直線必與拋物線相切;
③的面積為
.其中正確的結論是___.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面四邊形中(圖1),
為
的中點,
,且
,現將此平面四邊形沿
折起,使得二面角
為直二面角,得到一個多面體,
為平面
內一點,且
為正方形(圖2),
分別為
的中點.
(1)求證:平面//平面
;
(2)在線段上是否存在一點
,使得平面
與平面
所成二面角的余弦值為
?若存在,求出線段
的長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com