【題目】已知關于x的一元二次不等式mx2﹣(1﹣m)x+m≥0的解集為R,則實數m的取值范圍是 .
【答案】[ ,+∞)
【解析】解:當m=0時,不等式可化為﹣x≥0,解得x≤0,顯然不恒成立,
當m≠0時,不等式mx2﹣(1﹣m)x+m≥0的解集為R,
則對應的二次函數y=mx2﹣(1﹣m)x+m的圖象應開口朝上,且與x軸沒有交點,
故 ,解得m≥
,
綜上所述,實數m的取值范圍是[ ,+∞),
所以答案是:[ ,+∞).
【考點精析】利用解一元二次不等式對題目進行判斷即可得到答案,需要熟知求一元二次不等式解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規律:當二次項系數為正時,小于取中間,大于取兩邊.
科目:高中數學 來源: 題型:
【題目】若實數x、y、m滿足|x﹣m|>|y﹣m|,則稱x比y遠離m.
(1)若x2﹣1比3遠離0,求x的取值范圍;
(2)對任意兩個不相等的正數a、b,證明:a3+b3比a2b+ab2遠離2ab .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線在第一象限內的點
到焦點
的距離為
.
(1)若,過點
,
的直線
與拋物線相交于另一點
,求
的值;
(2)若直線與拋物線
相交于
兩點,與圓
相交于
兩點,
為坐標原點,
,試問:是否存在實數
,使得
的長為定值?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我省城鄉居民社會養老保險個人年繳費分100,200,300,400,500,600,700,800,900,1000(單位:元)十個檔次,某社區隨機抽取了50名村民,按繳費在100:500元,600:1000元,以及年齡在20:39歲,40:59歲之間進行了統計,相關數據如下:
100﹣500元 | 600﹣1000 | 總計 | |
20﹣39 | 10 | 6 | 16 |
40﹣59 | 15 | 19 | 34 |
總計 | 25 | 25 | 50 |
(1)用分層抽樣的方法在繳費100:500元之間的村民中隨機抽取5人,則年齡在20:39歲之間應抽取幾人?
(2)在繳費100:500元之間抽取的5人中,隨機選取2人進行到戶走訪,求這2人的年齡都在40:59歲之間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,{bn}是各項為正的等比數列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求數列{an},{bn}的通項公式;
(2)求數列{an+bn} 的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知幾何體P﹣ABCD如圖,面ABCD為矩形,面ABCD⊥面PAB,且面PAB為正三角形,若AB=2,AD=1,E、F分別為AC、BP中點,
(Ⅰ)求證:EF∥面PCD;
(Ⅱ)求直線BP與面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 與
的夾角為120°,且|
|=4,|
|=2,
(1)求
;
(2)求|3 +5
|;
(3)若向量 +k
與5
+2
垂直,求實數k的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com