【題目】已知的三邊分別為
所對的角分別為
,且三邊滿足
,已知
的外接圓的面積為
,設
.則
的取值范圍為______,函數
的最大值的取值范圍為_______.
【答案】
【解析】
化簡已知等式結合余弦定理可得角B,然后利用基本不等式可得a+c的范圍,再利用配方可得函數f(x)的最大值,由a+c的范圍即得f(x)最大值的范圍.
由,可知c(b+c)+a(a+b)=(a+b)(b+c),
化簡得,由余弦定理可得cosB=
,又B∈(0,π),B=
,
因為,解得R=
,
由 ,解得b=3,
由余弦定理得,
由基本不等式可得,解得a+c≤6,根據兩邊之和大于第三邊可得a+c>3,即a+c得取值范圍是
;
=-+4(a+c)sinx+2=-2
又-1≤sinx≤1,可知sinx=1時,函數f(x)的最大值為4(a+c),
函數的最大值的取值范圍為
故答案為:(1) (2)
科目:高中數學 來源: 題型:
【題目】某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心
為
的中點,其中
米,半徑
米,市民可位于水池邊緣任意一點
處觀賞.
(1)若當時,
,求此時
的值;
(2)設,且
.
(i)試將表示為
的函數,并求出
的取值范圍;
(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度
的最大值不小于
,試求
兩處噴泉間距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在直三棱柱中,
,
,其中
為棱
上的中點,
為棱
上且位于
點上方的動點.
(1)證明:平面
;
(2)若平面與平面
所成的銳二面角的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學2018年的高考考生人數是2015年高考考生人數的倍,為了更好地對比該?忌纳龑W情況,統計了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結論正確的是
A. 與2015年相比,2018年一本達線人數減少
B. 與2015年相比,2018年二本達線人數增加了倍
C. 2015年與2018年藝體達線人數相同
D. 與2015年相比,2018年不上線的人數有所增加
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x,g(x)=x2+ax(其中a∈R).對于不相等的實數x1,x2,設m=,n=
,現有如下命題:
①對于任意不相等的實數x1,x2,都有m>0;
②對于任意的a及任意不相等的實數x1,x2,都有n>0;
③對于任意的a,存在不相等的實數x1,x2,使得m=n;
④對于任意的a,存在不相等的實數x1,x2,使得m=-n.
其中真命題有___________________(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知城市周邊有兩個小鎮
、
,其中鄉鎮
位于城市
的正東方
處,鄉鎮
與城市
相距
,
與
夾角的正切值為2,為方便交通,現準備建設一條經過城市
的公路
,使鄉鎮
和
分別位于
的兩側,過
和
建設兩條垂直
的公路
和
,分別與公路
交匯于
、
兩點,以
為原點,
所在直線為
軸,建立如圖所示的平面直角坐標系
.
(1)當兩個交匯點、
重合,試確定此時
路段長度;
(2)當,計算此時兩個交匯點
、
到城市
的距離之比;
(3)若要求兩個交匯點、
的距離不超過
,求
正切值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量
(單位:噸)和年利潤
(單位:萬元)的影響.對近六年的年宣傳費
和年銷售量
(
)的數據作了初步統計,得到如下數據:
年份 | ||||||
年宣傳費 | ||||||
年銷售量 |
經電腦模擬,發現年宣傳費(萬元)與年銷售量
(噸)之間近似滿足關系式
(
).對上述數據作了初步處理,得到相關的值如表:
(1)根據所給數據,求關于
的回歸方程;
(2)已知這種產品的年利潤與
,
的關系為
若想在
年達到年利潤最大,請預測
年的宣傳費用是多少萬元?
附:對于一組數據,
,…,
,其回歸直線
中的斜率和截距的最小二乘估計分別為
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com