精英家教網 > 高中數學 > 題目詳情
若存在過點的直線與曲線都相切,則等于 (   )
A.B.C.D.
A

試題分析:設直線與曲線相切的切點為,利用導數的幾何意義得:,
解得,當時,直線為軸,與相切,即,解得,當時,直線為,與拋物線聯立,整理得:,因為相切,所以,解得,故選A.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應的圓Q的標準方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知直線l與拋物線相切于點P(2,1),且與軸交于點A,定點B的坐標為(2,0) .

(1)若動點M滿足,求點M的軌跡C;
(2)若過點B的直線l(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設橢圓的方程為右焦點為,方程的兩實根分別為,則(   )
A.必在圓
B.必在圓
C.必在圓
D.必在圓與圓形成的圓環之間

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

(2014·黃岡模擬)如圖,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B為焦點,且過點D的雙曲線的離心率為e1;以C,D為焦點,且過點A的橢圓的離心率為e2,則e1+e2的取值范圍為(  )
A.[2,+∞)B.(,+∞)
C.D.(+1,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知橢圓,直線的方程為,過右焦點的直線與橢圓交于異于左頂點兩點,直線,交直線分別于點,
(1)當時,求此時直線的方程;
(2)試問,兩點的縱坐標之積是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知F1、F2為雙曲線=1(a>0,b>0)的左、右焦點,過點F2作此雙曲線一條漸近線的垂線,垂足為M,且滿足||=3||,則此雙曲線的漸近線方程為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,對稱軸為坐標軸,焦點在軸上,有一個頂點為
(1)求橢圓的方程;
(2)過點作直線與橢圓交于兩點,線段的中點為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

以下幾個命題中:其中真命題的序號為_________________(寫出所有真命題的序號)
①設A、B為兩個定點,k為非零常數,,則動點P的軌跡為雙曲線;
②過定圓C上一定點A作圓的動弦AB,O為坐標原點,若則動點P的軌跡為橢圓;
③雙曲線有相同的焦點;
④在平面內,到定點的距離與到定直線的距離相等的點的軌跡是拋物線.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视